Displaying all 5 publications

Abstract:
Sort:
  1. Palani G, Arputhalatha A, Kannan K, Lakkaboyana SK, Hanafiah MM, Kumar V, et al.
    Molecules, 2021 May 10;26(9).
    PMID: 34068541 DOI: 10.3390/molecules26092799
    In the recent decades, development of new and innovative technology resulted in a very high amount of effluents. Industrial wastewaters originating from various industries contribute as a major source of water pollution. The pollutants in the wastewater include organic and inorganic pollutants, heavy metals, and non-disintegrating materials. This pollutant poses a severe threat to the environment. Therefore, novel and innovative methods and technologies need to adapt for their removal. Recent years saw nanomaterials as a potential candidate for pollutants removal. Nowadays, a range of cost-effective nanomaterials are available with unique properties. In this context, nano-absorbents are excellent materials. Heavy metal contamination is widespread in underground and surface waters. Recently, various studies focused on the removal of heavy metals. The presented review article here focused on removal of contaminants originated from industrial wastewater utilizing nanomaterials.
  2. Prasad SS, Naidu BR, Hanafiah MM, Lakshmidevi J, Marella RK, Lakkaboyana SK, et al.
    Molecules, 2021 Sep 04;26(17).
    PMID: 34500823 DOI: 10.3390/molecules26175390
    Metalloporphyrins (and porphyrins) are well known as pigments of life in nature, since representatives of this group include chlorophylls (Mg-porphyrins) and heme (Fe-porphyrins). Hence, the construction of chemistry based on these substances can be based on the imitation of biological systems. Inspired by nature, in this article we present the preparation of five different porphyrin, meso-tetraphenylporphyrin (TPP), meso-tetra(p-anisyl)porphyrin (TpAP), tetrasodium meso-tetra(p-sulfonatophenyl)porphyrin (TSTpSPP), meso-tetra(m-hydroxyphenyl)porphyrin (TmHPP), and meso-tetra(m-carboxyphenyl)porphyrin (TmCPP) as well as their N-pincer Pd(II)-complexes such as Pd(II)-meso-tetraphenylporphyrin (PdTPP), Pd(II)-meso-tetra(p-anisyl)porphyrin (PdTpAP), Pd(II)-tetrasodium meso-tetra(p-sulfonatophenyl)porphyrin (PdTSTpSPP), Pd(II)-meso-tetra(m-hydroxyphenyl)porphyrin (PdTmHPP), and Pd(II)-meso-tetra(m-carboxyphenyl)porphyrin (PdTmCPP). These porphyrin N-pincer Pd(II)-complexes were studied and found to be effective in the base-free self-coupling reactions of potassium aryltrifluoroborates (PATFBs) in water at ambient conditions. The catalysts and the products (symmetrical biaryls) were characterized using their spectral data. The high yields of the biaryls, the bio-mimicking conditions, good substrate feasibility, evading the use of base, easy preparation and handling of catalysts, and the application of aqueous media, all make this protocol very attractive from a sustainability and cost-effective standpoint.
  3. Lakkaboyana SK, Soontarapa K, Asmel NK, Kumar V, Marella RK, Yuzir A, et al.
    Sci Rep, 2021 Mar 11;11(1):5686.
    PMID: 33707529 DOI: 10.1038/s41598-021-84797-3
    The present study focused on the synthesis of copper hydroxide nanowires decorated on activated carbon (Cu(OH)2-NWs-PVA-AC). The obtained Cu(OH)2-NWs-PVA-AC Nano-composite was distinguished by XRD, SEM, EDX, BET, FTIR and XPS respectively. Besides, different variables such as solution pH, and initial dye concentration, contact time, and temperature were performed on the adsorption efficiency of MB in a small batch reactor. Further, the experimental results are analyzed by various kinetic models via PFO, PSO, intra-particle diffusion and Elovich models, and the results revealed that among the kinetic models, PSO shows more suitability. In addition, different adsorption isotherms were applied to the obtained experimental data and found that Langmuir-Freundlich and Langmuir isotherm were best fits with the maximum adsorption capacity of 139.9 and 107.6 mg/g, respectively. The Nano-composite has outstanding MB removal efficiency of 94-98.5% with a span of 10 min. and decent adsorption of about 98.5% at a pH of 10. Thermodynamic constants like Gibbs free energy, entropy, and enthalpy were analyzed from the temperature reliance. The results reveal the adsorption processes are spontaneous and exothermic in nature. The high negative value of ΔG° (- 44.11 to - 48.86 kJ/mol) and a low negative value of ΔH° (- 28.96 kJ/mol) show the feasibility and exothermic nature of the adsorption process. The synthesized dye was found to be an efficient adsorbent for the potential removal of cationic dye (methylene blue) from wastewater within a short time.
  4. Madduluri VR, Marella RK, Hanafiah MM, Lakkaboyana SK, Suresh Babu G
    Sci Rep, 2020 Dec 17;10(1):22170.
    PMID: 33335173 DOI: 10.1038/s41598-020-79188-z
    Magnesium aluminate spinel (MgAl2O4) supported Co3O4 catalysts are synthesized and tested for the oxidative dehydrogenation (ODH) of ethylbenzene using CO2 as a soft oxidant. The effect of spinel calcination temperature on the catalytic performance has been systematically investigated. With an increase in the activation temperature from 600 to 900 °C, the active presence of a single-phase MgAl2O4 spinel is observed. A catalyst series consisting of MgAl2O4 spinel with varying Co loadings (10-20 wt%) were prepared and systematically distinguished by ICP, XRD, BET, TPR, NH3-TPD, UV-Vis DRS, FT-IR, XPS, SEM, and TEM. Among the tested cobalt catalysts, 15Co/800MA sample derived by calcination of MgAl2O4 support at 800 °C exhibits the most excellent catalytic performance with the maximum ethylbenzene conversion (≥ 82%). Also, high yields of styrene (≥ 81%) could be consistently achieved on the same active catalyst. Further, the catalyst exhibited almost stable activity during 20 h time-on-stream with a slow decrease in the ethylbenzene conversion from 82 to 59%. However, the selectivity of styrene (98%) stayed almost constant during the reaction. Activation of the MgAl2O4 spinel at 800 °C facilitates a dramatic chemical homogeneity for the alignment of Co3O4 nanoparticles on the surface of the active catalyst. Moreover, the isolated Co3O4 clusters have a strong chemical/electronic interaction with the Mg2+ and Al3+ ions on the support perform a crucial role to achieve the maximum catalytic activity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links