Displaying all 3 publications

Abstract:
Sort:
  1. Marlini M, Mabuchi A, Mallard BL, Hairulhisyam N, Akashi-Takamura S, Harper JL, et al.
    Exp Physiol, 2016 12 01;101(12):1492-1505.
    PMID: 27634415 DOI: 10.1113/EP085727
    NEW FINDINGS: What is the central question of this study? The liver regenerative process is complex and involves a sequence of signalling events, but the possible involvement of structural and haemodynamic changes in vivo during this process has never been explored. What is the main finding and its importance? Normal sinusoidal blood flow and velocity are crucial for a normal regenerative response, and delays in these haemodynamic events resulted in impaired liver regeneration in lipopolysaccharide-insensitive, C3H/HeJ mice. Toll-like receptor 4 signalling is required for restoration of normal liver architecture during the liver regenerative process. Liver regeneration is delayed in mice with a defective Toll-like receptor 4 (TLR4; C3H/HeJ mice) but is normal in TLR4 knockouts (TLR4-/- ). Here, we investigated the possible involvement of structural and haemodynamic changes in vivo in the underlying mechanism. In lipopolysaccharide-sensitive (C3H/HeN and C57BL/6) and lipopolysaccharide-insensitive (C3H/HeJ and TLR4-/- ) mice, a 70% partial hepatectomy (PH) was performed under inhalational anaesthesia. At days 3 and 7 after PH, the hepatic microcirculation was interrogated using intravital microscopy. Delayed liver regeneration was confirmed in C3H/HeJ, but not in C3H/HeN, C57BL/6 (WT) or TLR4-/- mice by liver weight-to-body-weight ratio, the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and mitotic index data. At day 3 after PH, sinusoidal red blood cell velocity increased by 100% in C3H/HeN mice, but by only 40% in C3H/HeJ mice. Estimated sinusoidal blood flow was significantly higher at day 7 after PH in C3H/HeN than in C3H/HeJ mice. The hepatic cord width was significantly larger in C3H/HeN than in C3H/HeJ mice at day 3 and it was significantly larger in TLR4-/- than in C57BL/6 WT mice at day 7 after PH. Hepatocyte nucleus density and functional sinusoidal density was significantly reduced at days 3 and 7 after PH in all mouse strains compared with their zero-time controls. Functional sinusoidal density was significantly lower in C3H/HeJ compared with C3H/HeN mice at day 7 after PH. The present study indicates that altered sinusoidal blood flow and velocity in C3H/HeJ mice may contribute to the observed delay in the regenerative response in these mice. In addition, restoration of normal liver architecture may be delayed in TLR4-/- mice.
  2. Qatrun Nada D, Masniza ML, Abdullah N, Marlini M, Elias MH, Pathmanathan SG, et al.
    Malays J Pathol, 2022 Dec;44(3):367-385.
    PMID: 36591707
    Breast cancer remains a significant cause of mortality in females worldwide, despite advances in technology and treatment. MicroRNA expression in breast cancer is studied both as potential biomarkers and for therapeutic purposes. Accumulated evidence revealed microRNA profile of various types of cancer cells following antineoplastic treatment. The progression of research in this area provides better understanding on the anti-cancer mechanism of various natural compounds and drugs specifically on the microRNA regulation. Hence, we aim to systematically review differentially expressed microRNA in MCF-7, a commonly studied breast cancer cell line, after treatment with anti-neoplastic agents. Relevant keywords were used to screen for research articles that reported on the differentially expressed microRNAs in experimental models of MCF-7 before and after anti-neoplastic treatment. Target genes of microRNAs were identified from MiRTarbase and further in silico functional analysis of the target genes were performed using DAVID bioinformatic resources. Two upregulated microRNAs (mir-200c and let-7d) and 3 downregulated microRNAs (mir-27a, mir-27b and mir-203) were identified by highest number of studies. Three microRNAs (let-7a, mir-23a and mir-7) showed inconsistent direction of expression. Genes functional analysis revealed the regulatory effect of microRNA on genes related to angiogenesis, hypoxia, P53, FoxO and PI3K-AKT signalling. Clusters of genes associated to the pathway of angiogenesis, cancers, cell proliferation and apoptosis were noted through protein-protein interaction analysis. MicroRNAs, especially the mir-200c, let-7d, mir-27a, mir-27b and mir-203 from this review could be further validated experimentally to serve as molecular target or biomarkers for anti-neoplastic therapy.
  3. Amin AR, Hairulhisyam NM, Aqilah RNF, Nur Fariha MM, Mallard BL, Shanahan F, et al.
    Int J Mol Sci, 2023 Jun 28;24(13).
    PMID: 37445951 DOI: 10.3390/ijms241310774
    The hepatic matrisome is involved in the remodeling phase of liver regeneration. As the gut microbiota has been implicated in liver regeneration, we investigated its role in liver regeneration focusing on gene expression of the hepatic matrisome after partial hepatectomy (PHx) in germ-free (GF) mice, and in GF mice reconstituted with normal gut microbiota (XGF). Liver mass restoration, hepatocyte proliferation, and immune response were assessed following 70% PHx. Hepatic matrisome and collagen gene expression were also analyzed. Reduced liver weight/body weight ratio, mitotic count, and hepatocyte proliferative index at 72 h post PHx in GF mice were preceded by reduced expression of cytokine receptor genes Tnfrsf1a and Il6ra, and Hgf gene at 3 h post PHx. In XGF mice, these indices were significantly higher than in GF mice, and similar to that of control mice, indicating normal liver regeneration. Differentially expressed genes (DEGs) of the matrisome were lower in GF compared to XGF mice at both 3 h and 72 h post PHx. GF mice also demonstrated lower collagen expression, with significantly lower expression of Col1a1, Col1a2, Col5a1, and Col6a2 compared to WT mice at 72 h post PHx. In conclusion, enhanced liver regeneration and matrisome expression in XGF mice suggests that interaction of the gut microbiota and matrisome may play a significant role in the regulation of hepatic remodeling during the regenerative process.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links