Displaying all 5 publications

Abstract:
Sort:
  1. Mohd Yusof M, Takeda T, Mihara N, Matsumura Y
    Stud Health Technol Inform, 2020 Jun 16;270:1036-1040.
    PMID: 32570539 DOI: 10.3233/SHTI200319
    Health information systems (HIS) and clinical workflows generate medication errors that affect the quality of patient care. The rigorous evaluation of the medication process's error risk, control, and impact on clinical practice enable the understanding of latent and active factors that contribute to HIS-induced errors. This paper reports the preliminary findings of an evaluation case study of a 1000-bed Japanese secondary care teaching hospital using observation, interview, and document analysis methods. Findings were analysed from a process perspective by adopting a recently introduced framework known as Human, Organisation, Process, and Technology-fit. Process factors influencing risk in medication errors include template- and calendar-based systems, intuitive design, barcode check, ease of use, alert, policy, systematic task organisation, and safety culture Approaches for managing medication errors also exert an important role on error reduction and clinical workflow.
  2. Matsumura Y, Kamimura Y, Lee CY, Gorb SN, Rajabi H
    Sci Rep, 2021 04 12;11(1):7920.
    PMID: 33846369 DOI: 10.1038/s41598-021-86864-1
    We unveiled the penile penetration mechanics of two earwig species, Echinosoma horridum, whose intromittent organ, termed virga, is extraordinarily long, and E. denticulatum, whose virga is conversely short. We characterised configuration, geometry, material and bending stiffness for both virga and spermatheca. The short virga of E. denticulatum has a material gradient with the stiffer base, whereas the long virga of E. horridum and the spermathecae of both species are homogeneously sclerotised. The long virga of E. horridum has a lower bending stiffness than the spermatheca. The virga of E. denticulatum is overall less flexible than the spermatheca. We compared our results to a previous study on the penetration mechanics of elongated beetle genitalia. Based on the comparison, we hypothesised that the lower stiffness of the male intromittent organ comparing to the corresponding female structure is a universal prerequisite for the penetration mechanics of the elongated intromittent organ in insects.
  3. Dallai R, Gottardo M, Mercati D, Machida R, Mashimo Y, Matsumura Y, et al.
    Arthropod Struct Dev, 2014 Jul;43(4):371-83.
    PMID: 24657729 DOI: 10.1016/j.asd.2014.03.001
    The male and female reproductive apparatus of Zorotypus magnicaudelli (Malaysia), Zorotypus huxleyi (Ecuador) and Zorotypus weidneri (Brazil) were examined and documented in detail. The genital apparatus and sperm of the three species show only minor differences. The testes are larger in Z. magnicaudelli. Z. huxleyi lacks the helical appendage in the accessory glands. A long cuticular flagellum is present in Z. magnicaudelli and in the previously studied Zorotypus caudelli like in several other species, whereas it is absent in Z. weidneri, Z. huxleyi, Zorotypus hubbardi, Zorotypus impolitus and Zorotypus guineensis. Characteristic features of the very similar sperm are the presence of: a) two dense arches above the axoneme; b) a 9 + 9+2 axoneme with detached subtubules A and B of doublets 1 and 6; c) the axonemal end degenerating with enlarging accessory tubules; d) accessory tubules with 17 protofilaments; e) three accessory bodies beneath the axoneme; and f) two mitochondrial derivatives of equal shape. The first characteristic (a) is unknown outside of Zoraptera and possibly autapomorphic. The sperm structure differs distinctly in Z. impolitus and Z. hubbardi, which produce giant sperm and possess a huge spermatheca. The presence of the same sperm type in species either provided with a sclerotized coiled flagellum in males or lacking this structure indicates that a different organization of the genital apparatus does not necessarily affect the sperm structure. The flagellum and its pouch has probably evolved within Zoraptera, but it cannot be excluded that it is a groundplan feature and was reduced several times. The fossil evidence and our findings suggest that distinct modifications in the genital apparatus occurred before the fragmentation of the Gondwanan landmass in the middle Cretaceous.
  4. Al-Saari N, Amada E, Matsumura Y, Tanaka M, Mino S, Sawabe T
    PeerJ, 2019;7:e6769.
    PMID: 31024772 DOI: 10.7717/peerj.6769
    Biohydrogen is one of the most suitable clean energy sources for sustaining a fossil fuel independent society. The use of both land and ocean bioresources as feedstocks show great potential in maximizing biohydrogen production, but sodium ion is one of the main obstacles in efficient bacterial biohydrogen production. Vibrio tritonius strain AM2 can perform efficient hydrogen production with a molar yield of 1.7 mol H2/mol mannitol, which corresponds to 85% theoretical molar yield of H2 production, under saline conditions. With a view to maximizing the hydrogen production using marine biomass, it is important to accumulate knowledge on the effects of salts on the hydrogen production kinetics. Here, we show the kinetics in batch hydrogen production of V. tritonius strain AM2 to investigate the response to various NaCl concentrations. The modified Han-Levenspiel model reveals that salt inhibition in hydrogen production using V. tritonius starts precisely at the point where 10.2 g/L of NaCl is added, and is critically inhibited at 46 g/L. NaCl concentration greatly affects the substrate consumption which in turn affects both growth and hydrogen production. The NaCl-dependent behavior of fermentative hydrogen production of V. tritonius compared to that of Escherichia coli JCM 1649 reveals the marine-adapted fermentative hydrogen production system in V. tritonius. V. tritonius AM2 is capable of producing hydrogen from seaweed carbohydrate under a wide range of NaCl concentrations (5 to 46 g/L). The optimal salt concentration producing the highest levels of hydrogen, optimal substrate consumption and highest molar hydrogen yield is at 10 g/L NaCl (1.0% (w/v)).
  5. Suparmaniam U, Lam MK, Uemura Y, Shuit SH, Lim JW, Show PL, et al.
    Sci Total Environ, 2020 Feb 01;702:134995.
    PMID: 31710849 DOI: 10.1016/j.scitotenv.2019.134995
    Flocculants are foreign particles that aggregate suspended microalgae cells and due to cost factor and toxicity, harvesting of microalgae biomass has shifted towards the use of bioflocculants. In this study, mild acid-extracted bioflocculants from waste chicken's eggshell and clam shell were used to harvest Chlorella vulgaris that was cultivated using chicken compost as nutrient source. It was found that a maximum of 99% flocculation efficiency can be attained at pH medium of 9.8 using 60 mg/L of hydrochloric acid-extracted chicken's eggshell bioflocculant at 50 °C of reaction temperature. On the other hand, 80 mg/L of hydrochloric acid-extracted clam shell bioflocculant was sufficient to recover C. vulgaris biomass at pH 9.8 and optimum temperature of 40 °C. The bioflocculants and bioflocs were characterized using microscopic, zeta potential, XRD, AAS and FT-IR analysis. The result revealed that calcium ions in the bioflocculants are the main contributor towards the flocculation of C. vulgaris, employing charge neutralization and sweeping as possible flocculation mechanisms. The kinetic parameters were best fitted pseudo-second order which resulted in R2 of 0.99 under optimal flocculation temperature. The results herein, disclosed the applicability of shell waste-derived bioflocculants for up-scaled microalgae harvesting for biodiesel production.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links