Displaying all 2 publications

Abstract:
Sort:
  1. Wan Abdullah WMAN, Tan NP, Low LY, Loh JY, Wee CY, Md Taib AZ, et al.
    Plant Physiol Biochem, 2021 Apr;161:131-142.
    PMID: 33581621 DOI: 10.1016/j.plaphy.2021.01.046
    Lignosulfonate (LS) is a commonly used to promote plant growth. However, the underlying growth promoting responses of LS in plant remain unknown. Therefore, this study was undertaken to elucidate the underlying growth promoting mechanisms of LS, specifically calcium lignosulfonate (CaLS). Addition of 100 mg/L CaLS in phytohormone-free media enhanced recalcitrant indica rice cv. MR219 callus proliferation rate and adventitious root formation. Both, auxin related genes (OsNIT1, OsTAA1 and OsYUC1) and tryptophan biosynthesis proteins were upregulated in CaLS-treated calli which corroborated with increased of endogenous auxin content. Moreover, increment of OsWOX11 gene on CaLS-treated calli implying that the raised of endogenous auxin was utilized as a cue to enhance adventitious root development. Besides, CaLS-treated calli showed higher nutrient ions content with major increment in calcium and potassium ions. Consistently, increased of potassium protein kinases genes (OsAKT1, OsHAK5, OsCBL, OsCIPK23 and OsCamk1) were also recorded. In CaLS treated calli, the significant increase of calcium ion was observed starting from week one while potassium ion only recorded significant increase on week two onwards, suggesting that increment of potassium ion might be dependent on the calcium ion content in the plant cell. Additionally, reduced callus blackening was also coherent with downregulation of ROS scavenging protein and reduced H2O2 content in CaLS-treated calli suggesting the role of CaLS in mediating cellular homeostasis via prevention of oxidative burst in the cell. Taken together, CaLS successfully improved MR219 callus proliferation and root formation by increasing endogenous auxin synthesis, enhancing nutrients uptake and regulating cellular homeostasis.
  2. Eukun Sage E, Jailani N, Md Taib AZ, Mohd Noor N, Mohd Said MI, Abu Bakar M, et al.
    PLoS One, 2018;13(10):e0205753.
    PMID: 30321238 DOI: 10.1371/journal.pone.0205753
    The pulp and pericarp of mangosteen (Garcinia mangostana) fruit are popular food, beverage and health products whereby 60% of the fruit consist of the pericarp. The major metabolite in the previously neglected or less economically significant part of the fruit, the pericarp, is the prenylated xanthone α-mangostin. This highly bioactive secondary metabolite is typically isolated using solvent extraction methods that involve large volumes of halogenated solvents either via direct or indirect extraction. In this study, we compared the quantities of α-mangostin extracted using three different extraction methods based on the environmentally friendly solvents methanol and ethyl acetate. The three solvent extractions methods used were direct extractions from methanol (DM) and ethyl acetate (DEA) as well as indirect extraction of ethyl acetate obtained via solvent partitioning from an initial methanol extract (IEA). Our results showed that direct extraction afforded similar and higher quantities of α-mangostin than indirect extraction (DM: 318 mg; DEA: 305 mg; IEA: 209 mg per 5 g total dried pericarp). Therefore, we suggest that the commonly used method of indirect solvent extraction using halogenated solvents for the isolation of α-mangostin is replaced by single solvent direct extraction using the environmentally friendly solvents methanol or ethyl acetate.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links