Thermoplastic natural rubber sample is found isotropic based on Small Angle X-Ray Scattering (SAXS) pattern. Morphological interpretation was deduced based on ideal lamellar morphology using 1-D correlation function. The fitting was carried out using Porod tail model and Vonk for backextrapolated model. It is found that the long period value is 15. 7nm which is comparable to results obtained from Lorenzt corrected profile, 20nm. Crystalline thickness and amorphous thickness was found as 13.4 and 2.31nm respectively.
Thermoplastic natural rubber sample is found isotropic based on SAXS pattern. Morphological parameter was obtained based on ideal lamellar morphology using 1-D correlation function. The fitting was carried out using Porod tail model and Vonk for back-extrapolated model. It is found that the long period value is 15.7nm which is comparable to results obtained from Lorents corrected profile, 20nm. Crystalline thickness and amorphous thickness was found as 13.4 and 2.31nm respectively
This work main aim is to study the analysis of slow neutrons which include thermal and
epithermal neutrons and also analysis on fast neutrons. The outcome from this work showed that
the comparison result between fast and slow neutrons. The safety assessment at reactor TRIGA
FUSFATI (RTF) is one of the main objectives of the work and there is a detailed discussion on it
which helped in accomplishing the task. Gamma Rays produced in this experiment was high and in
the experiment and it is realized that the shielding plays a vital role in the success of this
experiment which prevents all the radiations. From the results of the experiment it is realized that
these gamma rays are not suitable for the application of Boron Neutron Capture Therapy
(BNCT). However, these radiations are suitable for the application of Neutron Radiography (NR).
The study on this work will help in study of nuclear applications such as BNCT, NR, SANS etc.
These applications are using in medical and nuclear fields. The electronic device used in the
experiment to detect neutron is Neutron Spectrometer. The results from Neutron Spectrometer
and TLDs are very similar which showed that the experiment is a success. Numerical results were
compared with those available in literature for validation.
L18 orthogonal array in mix level of Taguchi robust design method was carried out to optimize experimental conditions for the preparation of polymer blend composite. Tensile strength and neutron absorption of the composite were the properties of interest. Filler size, filler loading, ball mixing time and dispersion agent concentration were selected as parameters or factors which are expected to affect the composite properties. As a result of Taguchi analysis, filler loading was the most influencing parameter on the tensile strength and neutron absorption. The least influencing was ball-mixing time. The optimal conditions were determined by using mix-level Taguchi robust design method and a polymer composite with tensile strength of 6.33 MPa was successfully prepared. The composite was found to fully absorb thermal neutron flux of 1.04 x 105n/cm2/s with only 2 mm in thickness. In addition, the filler was also characterized by scanning electron microscopy (SEM) and elemental analysis (EDX).
The thermal conductivity of boron carbide filled thermoplastic natural rubber blend composite is studied experimentally as a function of filler loading and filler size. A polymer blend of 60/40 NR/HDPE was used as matrix for incorporation of particulate nano- and micro-sized B4C as filler to form the composite. As the filler loading is increased from 2-10%wt, a reduction and increment of thermal conductivity was observed. The results show at lower filler loading, HDPE crystallinity affects the thermal conductivity up to 4 and 6%wt of filler for nano- and micro-composite respectively. Further increase the loading do not much alter the crystallinity as the filler is distributed in continues phase of NR. The increment of filler amount in the amorphous NR causes the thermal conductivity to gradually increase which indicates the formation of interconnecting filler network structures