The leaves of Cinnamomum iners (Reinw. ex Blume-Lauraceae) have been refluxed successively with chloroform and alcohol to get chloroform extract and alcoholic extract. Both the extracts have been assayed for cytotoxicity against human colorectal tumour cells. The chloroform extract exhibited significant cytotoxicity with IC(50) 31 µg mL(-1) (p 200 µg mL(-1). The chloroform extract has been further proceeded for chemical analysis by GC-TOFMS and 178 components were identified including acids, amines, amides, aldehydes, alcohols, esters, benzene derivatives, bicyclic compounds, terpenes, hydrocarbons, naphthalene derivatives, furan derivatives, azulenes, etc. Nine components representing 51.73% of the total chloroform extract were detected as major components. Caryophyllene (14.41%) and Eicosanoic acid ethyl ester (12.17%) are the most prominent components of the chloroform extract. β-Caryophyllene (14.41%) as most abundant compound supports potent cytotoxicity as shown by chloroform extract.
In this study the novel caryophyllene type sesquiterpene lactone (aspfalcolide) has been isolated from the leaves of Asparagus falcatus (Linn.) and characterized by IR, 1D NMR, 2D NMR, EI-MS, HR-ESI-MS and X-ray single crystal diffraction analysis. The aspfalcolide crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 6.37360(10), b = 7.6890(2), c = 27.3281(6) Å, α = β = γ = 90(°) and Z = 4. One intermolecular O-H⋯O hydrogen bond enforces these natural molecules to form infinite chains through the crystal. Aspfalcolide was screened for its anti-angiogenic activity in human umbilical vein endothelial cells (HUVECs) and the result showed the remarkable inhibitory effect of aspfalcolide on the proliferation (IC(50) 1.82 μM), migration and tube formation of HUVECs.