Displaying all 10 publications

Abstract:
Sort:
  1. Meor Yusoff, M.S.
    MyJurnal
    The recovery of uranium from non-conventional sources has its importance in the security of nuclear fuel supply as well as producing a more value-added product to the contaminated source. In this paper, uranium is recovered both by developing a hydrothermal process as well as using the removal method. Developing hydrothermal process involves using high uranium concentrated starting material such as xenotime and thorium hydroxide waste produced from the monazite cracking process. Oxalate separation enable to produce a better uranium and thorium separation from the yttrium in xenotime as compared to the hydroxide precipitation. Also, a solvent extraction stage was included to separate the uranium from the thorium in the process using thorium hydroxide waste. The removal method involves using selective leaching for minerals with lower uranium content such as zircon. A better removal for uranium and thorium in zircon is achieved when a heat treatment process was done prior to the leaching stage. White zircon mineral was produced after this treatment and its quality meets the requirement for white ceramic opacifier and glaze.
  2. Meor Yusoff, M.S., Masliana Muslimin
    MyJurnal
    Considerable amount of uranium and thorium are found in our local zircon and the level is much higher than the maximum value adopted by Malaysia and many importing countries. Energy Dispersive X-ray Flourescence (EDXRF) proves to be a very valuable tool in the determination of these radioactive elements as it can perform the analysis simultaneously in shorter time. Quantitative analysis of this mineral involves the use of a fundamental parameter technique developed by National Bureau of Standard, USA and Geological Survey Canada (NBS-GSC FPT). The analysis for tin slag is more challenging as there is no reference standard of similar material. Thus the standard addition method was applied to correct the error from the matrix of the sample.
  3. Meor Yusoff, M.S., Masliana Muslimin
    MyJurnal
    The paper looks into the possibility of using standard addition method to analyse uranium and thorium in tin slag. Tin slag samples obtained from Butterworth was grind to 180 ȝm and injected with different concentrations of uranium and thorium. Linear calibration graphs were obtained for both these samples with R 2 values for uranium and thorium as 0.9989 and 0.9915 respectively. Based on this graphs, the initial uranium and thorium in the tin slag sample was established as 60 ppm for uranium and 160 ppm for thorium.
  4. Meor Yusoff, M.S., Latifah Amin
    MyJurnal
    XRF analysis was done on a local zircon samples and the result shows it has a high Fe, Th and U content. The high Fe content in Malaysian zircon had made the mineral to be classified as of a low-grade zircon. Presence of Fe in this mineral may be resulted from clay mineral coating found on the zircon surface. Chemical leaching technique was used for the removal of this Fe and the study also shows that a 600 o C heat pretreatment stage is important for the effectiveness of this process. Other parameters studied are the HCl concentration, leaching temperature and time. By using the optimum leaching parameters, the Fe content had been reduced to 0.049% and thus qualified it to be categorised as a premium grade zircon.
  5. Masliana Muslimin, Meor Yusoff, M.S.
    MyJurnal
    The experiment aims to investigate the effect of high energy milling to the crystallite size of α-alumina. The starting material used is α-alumina powder with starting crystal size of 86nm. This powder was milled at different time ranges from 0 to 60 minutes and milling speed ranges from 400 rpm to 1100 rpm using a wet milling technique in corundum abrasive materials. The wet milling technique involved the use of water with the alumina to water ratio of 1:6.1. Samples prepared were then examined using the X-Ray Diffraction (XRD) to calculate the crystallite size and scanning electron microscope (SEM) was also used to determine changes in the morphology. Results from these analysis showed that the crystallite size will get smaller when milling speed and time of more than 600rpm and 30 minutes respectively were used. Optimum conditions to achieve the smallest crystal size of 79.7nm are 1000 rpm and 60 minutes.
  6. Meor Yusoff, M.S., Masliana Muslimin, Latifah Amin
    MyJurnal
    Tin slag was collected from a slag dump in the Penang Island and was analysed for its elemental composition using microfocus XRF with a 300ȝm x-ray spot diameter. The tin slag sample was analysed direct without any sample treatment and analysis was conduct on four different spots. The result gives different elemental composition on these different spots. Among the elements analysed are Al2O3, SiO2, SnO2, CaO, TiO2, Nd2O3, MnO, Fe2O3, TaO, W2O3, As2O3, ThO2, U3O8, ZrO2 and Nb2O5. Elemental mapping was also done to show the distribution of these elements in the sample.
  7. Meor Yusoff, M.S., Masliana, M., Wilfred, P.
    MyJurnal
    Even though EDXRF analysis has major advantages in the analysis of stainless steel samples such as simultaneous determination of the minor elements, analysis can be done without sample preparation and non-destructive analysis, the matrix issue arised from the inter element interaction can make the the final quantitative result to be in accurate. The paper relates a comparative quantitative analysis using standard and standardless methods in the determination of these elements. Standard method was done by plotting regression calibration graphs of the interested elements using BCS certified stainless steel standards. Different calibration plots were developed based on the available certified standards and these stainless steel grades include low alloy steel, austentic, ferritic and high speed. The standardless method on the other hand uses a mathematical modelling with matrix effect correction derived from Lucas-Tooth and Price model. Further
    improvement on the accuracy of the standardless method was done by inclusion of pure elements into the development of the model. Discrepancy tests were then carried out for these quantitative methods on different certified samples and the results show that the high speed method is most reliable for determining of Ni and the standardless method for Mn.
  8. Meor Yusoff, M.S., Muhd Asshar Khalid, Ideris Abu Seman
    MyJurnal
    The paper describes the uses of microfocus XRF to identify infected Basal Stem Rot (BSR) disease in Malaysian palm oil plants. Among symptoms of BSR are wilting of the leaves and plant malnutrition. The study involves determining the inorganic element content of normal and infected leaves. Si, Mo, Cl, K, Ca and Mn had been identified as the major elements. Their distribution was determined by constructing an elemental map of each of this element on the leaves. Line scan was also performed to look into changes on the element composition on a defined region. Quantitative analysis of Cl, Ca and K on the normal and infected leaves show that the infected leaves have lower Cl content and a higher Ca/K ratio than the normal leaves.
  9. Meor Yusoff, M.S., Hishamuddin, H., Choo, Thye Foo
    MyJurnal
    The storage of oil sludge at refineries is a major problem to the petroleum industry. Oil sludge treatments such as by using sludge farming, incineration, physical and chemical techniques have been applied to separate the hydrocarbon from the solid sediment. The paper relates a characteristic study performed on solid sediment from a local oil sludge sample for making sintered brick. The study includes the used of XRD, XRF, digital microscopy and particle size analyzer. The result shows that the sample highly contains quartz minerals with particle size ranging from 0.5 – 200 ȝm. The chemical phosphorous from the surfactant can be removed by washing to make this solid sediment to be used as a material in the brick making.
  10. Meor Yusoff, M.S., Masliana Muslimin, Fadlullah Jili Fursani
    MyJurnal
    The paper relates a study on the development of an analysis procedure for measuring the gold coating thickness using EDXRF technique. Gold coating thickness was measured by relating the counts under the Au Lα peak its thickness value. In order to get a reasonably accurate result, a calibration graph was plotted using five gold-coated reference standards of different thicknesses. The calibration graph shows a straight line for thin coating measurement until 0.9μm. Beyond this the relationship was not linear and this may be resulted from the selfabsorption effect. Quantitative analysis was also performed on two different samples of goldcoated jewelry and a phone connector. Result from the phone connector analysis seems to agree with the manufacturer’s gold coating value. From the analysis of gold-coated jewelry it had been able to differentiate the two articles as gold wash and gold electroplated.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links