Displaying all 9 publications

Abstract:
Sort:
  1. Mirsafian H, Mat Ripen A, Merican AF, Bin Mohamad S
    ScientificWorldJournal, 2014;2014:482463.
    PMID: 25254246 DOI: 10.1155/2014/482463
    Beta-amyloid precursor protein cleavage enzyme 1 (BACE1) and beta-amyloid precursor protein cleavage enzyme 2 (BACE2), members of aspartyl protease family, are close homologues and have high similarity in their protein crystal structures. However, their enzymatic properties differ leading to disparate clinical consequences. In order to identify the residues that are responsible for such differences, we used evolutionary trace (ET) method to compare the amino acid conservation patterns of BACE1 and BACE2 in several mammalian species. We found that, in BACE1 and BACE2 structures, most of the ligand binding sites are conserved which indicate their enzymatic property of aspartyl protease family members. The other conserved residues are more or less randomly localized in other parts of the structures. Four group-specific residues were identified at the ligand binding site of BACE1 and BACE2. We postulated that these residues would be essential for selectivity of BACE1 and BACE2 biological functions and could be sites of interest for the design of selective inhibitors targeting either BACE1 or BACE2.
  2. Mirsafian H, Mat Ripen A, Singh A, Teo PH, Merican AF, Mohamad SB
    ScientificWorldJournal, 2014;2014:639682.
    PMID: 24707212 DOI: 10.1155/2014/639682
    Synonymous codon usage bias is an inevitable phenomenon in organismic taxa across the three domains of life. Though the frequency of codon usage is not equal across species and within genome in the same species, the phenomenon is non random and is tissue-specific. Several factors such as GC content, nucleotide distribution, protein hydropathy, protein secondary structure, and translational selection are reported to contribute to codon usage preference. The synonymous codon usage patterns can be helpful in revealing the expression pattern of genes as well as the evolutionary relationship between the sequences. In this study, synonymous codon usage bias patterns were determined for the evolutionarily close proteins of albumin superfamily, namely, albumin, α-fetoprotein, afamin, and vitamin D-binding protein. Our study demonstrated that the genes of the four albumin superfamily members have low GC content and high values of effective number of codons (ENC) suggesting high expressivity of these genes and less bias in codon usage preferences. This study also provided evidence that the albumin superfamily members are not subjected to mutational selection pressure.
  3. Mirsafian H, Ripen AM, Leong WM, Manaharan T, Mohamad SB, Merican AF
    Genomics, 2017 Oct;109(5-6):463-470.
    PMID: 28733102 DOI: 10.1016/j.ygeno.2017.07.003
    Differential gene and transcript expression pattern of human primary monocytes from healthy young subjects were profiled under different sequencing depths (50M, 100M, and 200M reads). The raw data consisted of 1.3 billion reads generated from RNA sequencing (RNA-Seq) experiments. A total of 17,657 genes and 75,392 transcripts were obtained at sequencing depth of 200M. Total splice junction reads showed an even more significant increase. Comparative analysis of the expression patterns of immune-related genes revealed a total of 217 differentially expressed (DE) protein-coding genes and 50 DE novel transcripts, in which 40 DE protein-coding genes were related to the immune system. At higher sequencing depth, more genes, known and novel transcripts were identified and larger proportion of reads were allowed to map across splice junctions. The results also showed that increase in sequencing depth has no effect on the sequence alignment.
  4. Leong WM, Ripen AM, Mirsafian H, Mohamad SB, Merican AF
    Genomics, 2019 07;111(4):899-905.
    PMID: 29885984 DOI: 10.1016/j.ygeno.2018.05.019
    High-depth next generation sequencing data provide valuable insights into the number and distribution of RNA editing events. Here, we report the RNA editing events at cellular level of human primary monocyte using high-depth whole genomic and transcriptomic sequencing data. We identified over a ten thousand putative RNA editing sites and 69% of the sites were A-to-I editing sites. The sites enriched in repetitive sequences and intronic regions. High-depth sequencing datasets revealed that 90% of the canonical sites were edited at lower frequencies (<0.7). Single and multiple human monocytes and brain tissues samples were analyzed through genome sequence independent approach. The later approach was observed to identify more editing sites. Monocytes was observed to contain more C-to-U editing sites compared to brain tissues. Our results establish comparable pipeline that can address current limitations as well as demonstrate the potential for highly sensitive detection of RNA editing events in single cell type.
  5. Mirsafian H, Ripen AM, Manaharan T, Mohamad SB, Merican AF
    OMICS, 2016 11;20(11):627-634.
    PMID: 27828772
    Transcriptome analyses based on high-throughput RNA sequencing (RNA-Seq) provide powerful and quantitative characterization of cell types and in-depth understanding of biological systems in health and disease. In this study, we present a comprehensive transcriptome profile of human primary monocytes, a crucial component of the innate immune system. We performed deep RNA-Seq of monocytes from six healthy subjects and integrated our data with 10 other publicly available RNA-Seq datasets of human monocytes. A total of 1.9 billion reads were generated, which allowed us to capture most of the genes transcribed in human monocytes, including 11,994 protein-coding genes, 5558 noncoding genes (including long noncoding RNAs, precursor miRNAs, and others), 2819 pseudogenes, and 7034 putative novel transcripts. In addition, we profiled the expression pattern of 1155 transcription factors (TFs) in human monocytes, which are the main molecules in controlling the gene transcription. An interaction network was constructed among the top expressed TFs and their targeted genes, which revealed the potential key regulatory genes in biological function of human monocytes. The gene catalog of human primary monocytes provided in this study offers significant promise and future potential clinical applications in the fields of precision medicine, systems diagnostics, immunogenomics, and the development of innovative biomarkers and therapeutic monitoring strategies.
  6. Mirsafian H, Ripen AM, Leong WM, Chear CT, Bin Mohamad S, Merican AF
    Sci Rep, 2017 07 28;7(1):6836.
    PMID: 28754963 DOI: 10.1038/s41598-017-06342-5
    X-linked agammaglobulinemia (XLA) is a rare genetic disorder, caused by mutations in BTK (Bruton's Tyrosine Kinase) gene. Deep high-throughput RNA sequencing (RNA-Seq) approach was utilized to explore the possible differences in transcriptome profiles of primary monocytes in XLA patients compared with healthy subjects. Our analysis revealed the differences in expression of 1,827 protein-coding genes, 95 annotated long non-coding RNAs (lncRNAs) and 20 novel lincRNAs between XLA patients and healthy subjects. GO and KEGG pathway analysis of differentially expressed (DE) protein-coding genes showed downregulation of several innate immune-related genes and upregulation of oxidative phosphorylation and apoptosis-related genes in XLA patients compared to the healthy subjects. Moreover, the functional prediction analysis of DE lncRNAs revealed their potential role in regulating the monocytes cell cycle and apoptosis in XLA patients. Our results suggested that BTK mutations may contribute to the dysregulation of innate immune system and increase susceptibility to apoptosis in monocytes of XLA patients. This study provides significant finding on the regulation of BTK gene in monocytes and the potential for development of innovative biomarkers and therapeutic monitoring strategies to increase the quality of life in XLA patients.
  7. Mirsafian H, Manda SS, Mitchell CJ, Sreenivasamurthy S, Ripen AM, Mohamad SB, et al.
    Genomics, 2016 07;108(1):37-45.
    PMID: 26778813 DOI: 10.1016/j.ygeno.2016.01.002
    Long non-coding RNAs (lncRNAs) have been shown to possess a wide range of functions in both cellular and developmental processes including cancers. Although some of the lncRNAs have been implicated in the regulation of the immune response, the exact function of the large majority of lncRNAs still remains unknown. In this study, we characterized the lncRNAs in human primary monocytes, an essential component of the innate immune system. We performed RNA sequencing of monocytes from four individuals and combined our data with eleven other publicly available datasets. Our analysis led to identification of ~8000 lncRNAs of which >1000 have not been previously reported in monocytes. PCR-based validation of a subset of the identified novel long intergenic noncoding RNAs (lincRNAs) revealed distinct expression patterns. Our study provides a landscape of lncRNAs in monocytes, which could facilitate future experimental studies to characterize the functions of these molecules in the innate immune system.
  8. Heidari MH, Movafagh A, Abdollahifar MA, Abdi S, Barez MM, Azimi H, et al.
    Anat Cell Biol, 2017 Mar;50(1):69-72.
    PMID: 28417057 DOI: 10.5115/acb.2017.50.1.69
    Prostate cancer is the most common cancer type in men and is the second cause of death, due to cancer, in patients over 50, after lung cancer. Prostate specific antigen (PSA) is a widely used tumor marker for prostate cancer. Recently, PSA is discovered in non-prostatic cancer tissues in men and women raising doubts about its specificity for prostatic tissues. PSA exists in low serum level in healthy men and in higher levels in many prostate disorders, including prostatitis and prostate cancer. Thus, a supplementary tumor marker is needed to accurately diagnose the cancer and to observe the patient after treatment. Recently, soluble human leukocyte antigen-G (sHLA-G) has been introduced as a new tumor marker for different cancer types, including colorectal, breast, lung, and ovary. The present descriptive-experimental study was carried out including patients with malignant prostate tumor, patients with benign prostate tumor, and a group of health men as the control group, as judged by an oncologist as well as a pathologist. After sterile blood sampling, sHLA-G was measured by enzyme-linked immunosorbent assay in each group. The data was then analyzed using one-way ANOVA. P≤0.05 was considered as statistically significant. The results showed that the mean of sHLA-G level was high in patients. Also, it was found that there was a significant difference in sHLA serum level between the three groups. The data revealed that sHLA-G can be a novel supplementary tumor marker in addition to PSA to diagnose prostate cancer.
  9. Heidari MH, Movafagh A, Abdollahifar MA, Abdi S, Barez MM, Azimi H, et al.
    Anat Cell Biol, 2017 Jun;50(2):162.
    PMID: 28713622 DOI: 10.5115/acb.2017.50.2.162
    [This corrects the article on p. 69 in vol. 50, PMID: 28417057.].
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links