Displaying all 4 publications

Abstract:
Sort:
  1. Rizal S, Mistar EM, Rahman AA, H P S AK, Oyekanmi AA, Olaiya NG, et al.
    Polymers (Basel), 2021 Jul 14;13(14).
    PMID: 34301059 DOI: 10.3390/polym13142303
    Bionanocarbon as a properties enhancement material in fibre reinforced nanobiocomposite was investigated for sustainable material applications. Currently, an extensive study using the micro size of biocarbon as filler or reinforcement materials has been done. However, poor fibre-matrix interface results in poor mechanical, physical, and thermal properties of the composite. Hence in this study, the nanoparticle of biocarbon was synthesised and applied as a functional material and properties enhancement in composite material. The bionanocarbon was prepared from an oil palm shell, an agriculture waste precursor, via a single-step activation technique. The nanocarbon filler loading was varied from 0, 1, 3, and 5% as nanoparticle properties enhancement in nonwoven kenaf fibre reinforcement in vinyl ester composite using resin transfer moulding technique. The functional properties were evaluated using TEM, particle size, zeta potential, and energy dispersion X-ray (EDX) elemental analysis. While the composite properties enhancement was evaluated using physical, mechanical, morphological, thermal, and wettability properties. The result indicated excellent nanofiller enhancement of fibre-matrix bonding that significantly improved the physical, mechanical, and thermal properties of the bionanocomposite. The SEM morphology study confirmed the uniform dispersion of the nanoparticle enhanced the fibre-matrix interaction. In this present work, the functional properties of bionanocarbon from oil palm shells (oil palm industrial waste) was incorporated in nanaobiocomposite, which significantly enhance its properties. The optimum enhancement of the bionanocomposite functional properties was obtained at 3% bionanocarbon loading. The improvement can be attributed to homogeneity and improved interfacial interaction between nanoparticles, kenaf fibre, and matrix.
  2. Rizal S, Mistar EM, Oyekanmi AA, H P S AK, Alfatah T, Olaiya NG, et al.
    Molecules, 2021 Jul 13;26(14).
    PMID: 34299524 DOI: 10.3390/molecules26144248
    The use of chemical modification of cellulosic fibre is applied in order to increase the hydrophobicity, hence improving the compatibility between the fibre and matrix bonding. In this study, the effect of propionic anhydride modification of kenaf fibre was investigated to determine the role of bionanocarbon from oil palm shell agricultural wastes in the improvement of the functional properties of bionanocomposites. The vinyl esters reinforced with unmodified and propionic anhydride modified kenaf fibres bio nanocomposites were prepared using 0, 1, 3, 5 wt% of bio-nanocarbon. Characterisation of the fabricated bionanocomposite was carried out using FESEM, TEM, FT-IR and TGA to investigate the morphological analysis, surface properties, functional and thermal analyses, respectively. Mechanical performance of bionanocomposites was evaluated according to standard methods. The chemical modification of cellulosic fibre with the incorporation of bionanocarbon in the matrix exhibited high enhancement of the tensile, flexural, and impact strengths, for approximately 63.91%, 49.61% and 54.82%, respectively. The morphological, structural and functional analyses revealed that better compatibility of the modified fibre-matrix interaction was achieved at 3% bionanocarbon loading, which indicated improved properties of the bionanocomposite. The nanocomposites exhibited high degradation temperature which signified good thermal stability properties. The improved properties of the bionanocomposite were attributed to the effect of the surface modification and bionanocarbon enhancement of the fibre-matrix networks.
  3. Rizal S, Alfatah T, H P S AK, Mistar EM, Abdullah CK, Olaiya FG, et al.
    Nanomaterials (Basel), 2021 Mar 04;11(3).
    PMID: 33806473 DOI: 10.3390/nano11030637
    The demand for bioplastic material for industrial applications is increasing. However, moisture absorption and low mechanical strength have limited the use of bioplastic in commercial-scale applications. Macroalgae is no exception to these challenges of bioplastics. In this study, Kappaphycus alvarezii macroalgae were reinforced with lignin nanoparticles. Lignin nanoparticles (LNPs) were used as a filler to reduce the brittleness and hydrophilic nature of macroalgae (matrix). Lignin nanofiller was produced using a green approach from black liquor of soda pulping waste and purified. The physical, mechanical, morphological, structural, thermal, and water barrier properties of LNPs with and without the purification process in macroalgae films were studied. The bioplastic films' functional properties, such as physical, mechanical, thermal, and water barrier properties, were significantly improved by incorporating purified and unpurified LNPs. However, the purified LNPs have a greater reinforcement effect on the macroalgae than unpurified LNPs. In this study, bioplastic film with 5% purified LNPs presented the optimum enhancement on almost all the functional properties. The enhancement is attributed to high compatibility due to strong interfacial interaction between the nanofiller and matrix. The developed LNPs/macroalgae bioplastic films can provide additional benefits and solutions to various industrial applications, especially packaging material.
  4. Rizal S, Alfatah T, Abdul Khalil HPS, Yahya EB, Abdullah CK, Mistar EM, et al.
    Polymers (Basel), 2022 Nov 25;14(23).
    PMID: 36501521 DOI: 10.3390/polym14235126
    The development of bioplastic materials that are biobased and/or degradable is commonly presented as an alleviating alternative, offering sustainable and eco-friendly properties over conventional petroleum-derived plastics. However, the hydrophobicity, water barrier, and antimicrobial properties of bioplastics have hindered their utilization in packaging applications. In this study, lignin nanoparticles (LNPs) with a purification process were used in different loadings as enhancements in a Kappaphycus alvarezii matrix to reduce the hydrophilic nature and improve antibacterial properties of the matrix and compared with unpurified LNPs. The influence of the incorporation of LNPs on functional properties of bioplastic films, such as morphology, surface roughness, structure, hydrophobicity, water barrier, antimicrobial, and biodegradability, was studied and found to be remarkably enhanced. Bioplastic film containing 5% purified LNPs showed the optimum enhancement in almost all of the ultimate performances. The enhancement is related to strong interfacial interaction between the LNPs and matrix, resulting in high compatibility of films. Bioplastic films could have additional advantages and provide breakthroughs in packaging materials for a wide range of applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links