Displaying all 10 publications

Abstract:
Sort:
  1. Mitra NK, Barua A
    BMC Med Educ, 2015;15:29.
    PMID: 25884641 DOI: 10.1186/s12909-015-0318-1
    BACKGROUND: The impact of web-based formative assessment practices on performance of undergraduate medical students in summative assessments is not widely studied. This study was conducted among third-year undergraduate medical students of a designated university in Malaysia to compare the effect, on performance in summative assessment, of repeated computer-based formative assessment with automated feedback with that of single paper-based formative assessment with face-to face feedback.
    METHODS: This quasi-randomized trial was conducted among two groups of undergraduate medical students who were selected by stratified random technique from a cohort undertaking the Musculoskeletal module. The control group C (n = 102) was subjected to a paper-based formative MCQ test. The experimental group E (n = 65) was provided three online formative MCQ tests with automated feedback. The summative MCQ test scores for both these groups were collected after the completion of the module.
    RESULTS: In this study, no significant difference was observed between the mean summative scores of the two groups. However, Band 1 students from group E with higher entry qualification showed higher mean score in the summative assessment. A trivial, but significant and positive correlation (r(2) = +0.328) was observed between the online formative test scores and summative assessment scores of group E. The proportionate increase of performance in group E was found to be almost double than group C.
    CONCLUSION: The use of computer based formative test with automated feedback improved the performance of the students with better academic background in the summative assessment. Computer-based formative test can be explored as an optional addition to the curriculum of pre-clinical integrated medical program to improve the performance of the students with higher academic ability.
  2. Mitra NK, Nadarajah VD, Siong HH
    Folia Neuropathol, 2009;47(1):60-8.
    PMID: 19353435
    Dermal absorption of chlorpyrifos (CPF), an organophosphate (OP) pesticide, is important because of its popular use. Stress has been reported to exacerbate neurotoxic effects of certain OP pesticides; however, quantitative studies to corroborate this are not reported. This study correlates the changes in acetylcholinesterase (AChE) levels and neuronal counts in areas of the hippocampus to consecutive exposure of stress, heat and CPF. Male mice (60 days) were segregated into six groups: one control, one stress control, and four treated groups (n=10). CPF was applied in doses of 1/2 and 1/5 of dermal LD50 (E1 and E2) over the tail of mice under occlusive bandages for 3 weeks. Stress control [(s) C] mice were subjected to swim stress at 38 degrees C (6 mins/day, 3 weeks). (s) E1 and (s) E2 were subjected to swim stress before CPF application. Blood and brain AChE levels were estimated using a spectrofluorometric method (Amplex Red). Pyramidal neurons of the cornu ammonis of the hippocampus under Nissl stain from histological sections were counted per unit area of section and analyzed statistically using one way ANOVA. Swim stress at 38 degrees C aggravated reduction of serum AChE by dermal exposure to CPF by 19.7%. Neurons of CA3 and CA1 regions of the hippocampus showed significant reduction in neuronal counts in (s) E1 and (s) E2 groups compared to E1 and E2 groups. Whereas application of CPF 1/2 dermal LD50 (E1) showed significant reduction of neuronal counts only in the CA3 area.
  3. Mitra NK, Siong HH, Nadarajah VD
    Ann Agric Environ Med, 2008;15(2):211-6.
    PMID: 19061257
    Dermal absorption of chlorpyrifos, an organophosphate insecticide is important because of its use in agriculture and control of household pests. The objectives of this study are to investigate firstly, the biochemical changes in the blood and secondly, histomorphometric changes in the hippocampus of adult mice following dermal application of chlorpyrifos in sub-toxic doses. Male Swiss albino mice (60 days) were segregated into one control and two treated groups (n=10). Chlorpyrifos, diluted with xylene, was applied in doses of 1/2 of LD(50) (E1) and 1/5 of LD(50) (E2) over the tail of mice of the two treated groups, 6 hours daily for 3 weeks. AChE levels in the serum and brain were estimated using a spectrophotometric method (Amplex Red reagent). Coronal serial sections were stained with 0.2 % thionin in acetate buffer and pyramidal neurons of Cornu Ammonis of hippocampus were counted at 400x magnification using Image Pro Express software. At the end of 3 weeks, body weights were reduced significantly in E1 group. Serum AChE concentrations were reduced by 97 % in E1 and 74 % in E2 groups compared to controls. The neurons of CA 3 and CA 1 in the hippocampus showed evidences of morphological damage in both treated groups. Furthermore, the neuronal count was significantly reduced in CA 3 layer of hippocampus in E1 group.
  4. Mitra NK, Lee MS, Nadarajah VD
    Trop Biomed, 2010 Apr;27(1):19-29.
    PMID: 20562809
    Dermal exposure to organophosphate pesticide is important because of its popular use. This study planned to compare the changes in serum acetylcholinesterase, paraoxonase and neuronal density of hippocampus and iso-cortex between two age groups of Swiss albino mice (18-day-old and 150-day-old) after dermal application of (1/2) LD50 of chlorpyrifos for 14 days. Statistically significant reduction was observed in serum acetylcholinesterase (Mann-Whitney test, p<0.05) and neuronal density (Independent samples t-test, p<0.05) in exposed groups compared to the control. The reduction in serum AChE and neuronal density was more pronounced in exposed adult mice than in exposed neonatal mice. The paraoxonase level was insignificant in control neonatal mice, whereas it was 890-fold more in exposed neonatal mice. Upregulated paraoxonase levels may be extrapolated to produce relatively lower reduction of cholinesterase and neuronal density in neonatal mice.
  5. Krishnan K, Mitra NK, Yee LS, Yang HM
    J Neural Transm (Vienna), 2012 Mar;119(3):345-52.
    PMID: 21922192 DOI: 10.1007/s00702-011-0715-5
    Chlorpyrifos (CPF), an organophosphate pesticide inhibits acetylcholinesterase (AChE) and causes neuromuscular incoordination among children and elderly. The objectives of the present study were to compare the neurotoxic effects of dermal application of CPF on the cerebellum in the parameters of glial fibrillary acidic protein (GFAP) expression in young and adult mice and to correlate with the changes in acetylcholinesterase levels. Male Balb/c mice, 150 days old (adult) and 18 days old (young) were dermally applied with ½ LD(50) of CPF over the tails for 14 days. Serum AChE concentration was estimated and GFAP immunostaining was performed on sagittal paraffin sections through the vermis of cerebellum. Although reduced in both age-groups exposed to CPF, percentage of reduction in serum AChE was more in adult compared to the young. Under GFAP immunostaining, brown colour fibres and glial cells were observed in cerebellar cortex and medulla in both the experimental groups. The mean GFAP-positive glial cell count in cerebellar medulla per mm(2) of section was significantly (p 
  6. Haleagrahara N, Siew CJ, Mitra NK, Kumari M
    Neurosci Lett, 2011 Aug 15;500(2):139-43.
    PMID: 21704673 DOI: 10.1016/j.neulet.2011.06.021
    An increasing large body of research on Parkinson's disease (PD) has focused on the understanding of the mechanisms behind the potential neuro protection offered by antioxidants and iron chelating agents. In this study, the protective effect of the bioflavonoid quercetin on 6-hydroxydopamine (6-OHDA)-induced model of PD was investigated. PD was induced by a single intracisternal injection of 6-hydroxydopamine (300μg) to male Sprague-Dawley rats. Quercetin treatment (30mg/kg body weight) over 14 consecutive days markedly increased the striatal dopamine and antioxidant enzyme levels compared with similar measurements in the group treated with 6-OHDA alone. There was a significant decrease in protein carbonyl content in the striatum compared with that of rats that did not receive quercetin. A significant increase in neuronal survivability was also found with quercetin treatment in rats administered 6-OHDA. In conclusion, treatment with quercetin defended against the oxidative stress in the striatum and reduced the dopaminergic neuronal loss in the rat model of PD.
  7. Lim KL, Tay A, Nadarajah VD, Mitra NK
    J Occup Med Toxicol, 2011 Mar 08;6(1):4.
    PMID: 21385392 DOI: 10.1186/1745-6673-6-4
    BACKGROUND: Chlorpyrifos (CPF), a commonly used pesticide worldwide, has been reported to produce neurobehavioural changes. Dermal exposure to CPF is common in industries and agriculture. This study estimates changes in glial fibrillary acidic protein (GFAP) expression in hippocampal regions and correlates with histomorphometry of neurons and serum cholinesterase levels following dermal exposure to low doses of CPF with or without swim stress.

    METHODS: Male albino mice were separated into control, stress control and four treatment groups (n = 6). CPF was applied dermally over the tails under occlusive bandage (6 hours/day) at doses of 1/10th (CPF 0.1) and 1/5th dermal LD50 (CPF 0.2) for seven days. Consequent treatment of swim stress followed by CPF was also applied. Serum cholinesterase levels were estimated using spectroflurometric methods. Paraffin sections of the left hippocampal regions were stained with 0.2% thionin followed by the counting of neuronal density. Right hippocampal sections were treated with Dako Envision GFAP antibodies.

    RESULTS: CPF application in 1/10th LD50 did not produce significant changes in serum cholinesterase levels and neuronal density, but increased GFAP expression significantly (p < 0.001). Swim stress with CPF 0.1 group did not show increase in astrocytic density compared to CPF 0.1 alone but decreased neuronal density.

    CONCLUSIONS: Findings suggest GFAP expression is upregulated with dermal exposure to low dose of CPF. Stress combined with sub-toxic dermal CPF exposure can produce neurotoxicity.

  8. Mitra NK, Goh TE, Bala Krishnan T, Nadarajah VD, Vasavaraj AK, Soga T
    Int J Clin Exp Pathol, 2013;6(8):1505-15.
    PMID: 23923068
    Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease of idiopathic etiology. Glutamate excitotoxicity is one of the proposed hypotheses causing progressive death of motor neurons. We aimed to develop an experimental animal model of this disease to enhance the knowledge of pathophysiological mechanism of ALS. Male Wistar rats were infused with Kainic acid (KA) intra-cisternally for 5 days at the dosage of 50 fmol/day and 150 fmol/day. Locomotor activity, sensory function and histological changes in cervical and lumbar sections of spinal cord were evaluated. Glial Fibrillary Acidic Protein (GFAP) and Neurofilament Protein (NFP) were used as immunohistochemical marker for reactive astrogliosis and neuronal damage respectively. Specific Superoxide Dismutase (SOD) activity of spinal cord was estimated. The locomotor activity in the parameter of observed mean action time remained reduced on 14(th) day after administration of KA. Spinal motor neurons under Nissl stain showed pyknosis of nucleus and vacuolation of neuropil. GFAP expression increased significantly in the lumbar section of the spinal cord with high dose of KA treatment (p<0.05). NFP was expressed in axonal fibres around the neurons in KA-treated rats. A significant increase in specific SOD activity in both cervical and lumbar sections of the spinal cord was found with low dose of KA treatment (p<0.05). This study concludes that spinal cord damage with some features similar to ALS can be produced by low dose intra-cisternal administration of KA.
  9. Mitra NK, Xuan KY, Teo CC, Xian-Zhuang N, Singh A, Chellian J
    Res Pharm Sci, 2020 Dec;15(6):602-611.
    PMID: 33828603 DOI: 10.4103/1735-5362.301345
    Background and Purpose: Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and axonal loss. Quantitative estimation of behavioral, locomotor, and histological changes following the use of alpha-tocopherol (AT) in the animal model of MS have not been reported. The present study was planned to evaluate whether AT can improve sensorimotor dysfunction and reduce demyelination in the cuprizone (CPZ)-induced rat model of MS.

    Experimental approach: Female Sprague-Dawley rats (8 weeks) were fed with cuprizone diet for 5 weeks followed by intraperitoneal injections of alpha-tocopherol (100 mg/Kg) or PBS for 2 weeks (groups E1 and E2, n = 8). Group C (n = 8) was fed with normal pellets followed by intraperitoneal doses of PBS. Open-field test and beam walking were carried out on every 10th day. The mean area of demyelination in the corpus callosum was quantified in Luxol® fast blue (LFB) stained histological sections of the forebrain. Qualitative grading for relative changes in the stains of myelinated fibers was also done.

    Findings/Results: During withdrawal of CPZ, AT treatment increased the average speed by 22% in group E1, compared to group E2 (P < 0.05). The mean time to walk the beam was reduced in group E1 by 2.6% compared to group E2 (P < 0.05). The rearing frequency was increased in group E1 during week 6-7 compared to that in the period of CPZ treatment. The mean area of demyelination in the corpus callosum showed a 12% reduction in group E1 compared to group E2 (P < 0.05).

    Conclusion and implications: Short-term AT therapy showed improvement in motor dysfunction and reduction of demyelination in the animal model of MS.

  10. Mitra NK, Bindal U, Eng Hwa W, Chua CL, Tan CY
    Int J Clin Exp Pathol, 2015;8(10):12041-52.
    PMID: 26722389
    Out of the minor myelin proteins, most significant one is myelin oligodendrocyte glycoprotein (MOG). Mesenchymal stem cells (MSCs) have proven immunoregulatory capacity. The objective of this study was to investigate the effects of syngeneic MSCs on mouse model of experimental autoimmune encephalomyelitis (EAE) through observation of locomotion by footprint analysis, histological analysis of spinal cord and estimation IL-17. C57BL/6 mice (10 weeks, n = 16) were immunized with 300 µg of MOG35-55 and 200 µL of complete Freund's adjuvant (CFA) to produce EAE model. Sham-treated control (n = 8) were injected with CFA. Half of immunized mice were given 100 µL of PBS (n = 8) and next half (n = 8) received 1 × 10(5) MSCs on day 11 through the tail veins. Clinical scoring showed development of EAE (loss of tonicity of tail and weakness of hind limb) on day 10. Following MSC treatment, clinical scores and hindlimb stride length showed significant improvement on day 15 onwards, compared to day 10 (P < 0.05). Under LFB staining, while PBS-treated group of EAE mice showed pale and degenerated axons in anterolateral white column of lumbar spinal cord, MSC-treated group showed numerous normal-looking axons. H&E staining showed normal axons in anterolateral white column and reduction of macrophages in MSC-treated EAE mice group. A lower level of IL-17 was observed in MSC treated EAE mice, compared to PBS-treated EAE mice. Our results suggest that Intravenous MSC has the potential to improve the locomotion and regeneration of axons in spinal cord in MOG-induced EAE model.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links