METHODS: A cross-sectional study was employed involving 239 ambulances from selected hospitals and clinics. Ambulance service utilization was based on the number of trips, distance and duration of travel obtained from travel logbooks. A mixed top-down and activity-based costing approach was used to estimate the monthly cost of ambulance services. This constituted personnel, maintenance, fuel, overhead, consumables, ambulance, and medical equipment costs. The utilization and costs of ambulance services were further compared between settings and geographical locations.
RESULTS: The average total cost of ambulance services was MYR 11,410.44 (US$ 2,756.14) for hospitals and MYR 9,574.39 (US$ 2,312.65) for clinics, albeit not significantly different. Personnel cost was found to be the main contributor to the total cost, at around 44% and 42% in hospitals and clinics, respectively. There was however a significant difference in the total cost in terms of the type and age of ambulances, in addition to their location. In terms of service utilization, the median number of trips and duration of ambulance usage was significantly higher in clinics (31.88 trips and 58.58 hours) compared to hospitals (16.25 trips and 39.25 hours).
CONCLUSIONS: The total cost of ambulance services was higher in hospitals compared to clinics, while its utilization showed a converse trend. The current findings evidence that despite the ambulance services being all under the MOH, their operating process and utilization reflected an inherent difference by setting.
METHODS: A Markov model was developed to estimate the cost and outcomes ambulance replacement strategies over a period of 20 years. The model was tested using two alternative strategies of 10-year and 15-year. Model inputs were derived from published literature and local study. Model development and economic analysis were accomplished using Microsoft Excel 2016. The outcomes generated were costs per year, the number of missed trips and the number of lives saved, in addition to the Incremental Cost-Effectiveness Ratio (ICER). One-Way Deterministic Sensitivity Analysis (DSA) and Probabilistic Sensitivity Analysis (PSA) were conducted to identify the key drivers and to assess the robustness of the model.
RESULTS: Findings showed that the most expensive strategy, which is the implementation of 10 years replacement strategy was more cost-effective than 15 years ambulance replacement strategy, with an ICER of MYR 11,276.61 per life saved. While an additional MYR 13.0 million would be incurred by switching from a 15- to 10-year replacement strategy, this would result in 1,157 deaths averted or additional live saved per year. Sensitivity analysis showed that the utilization of ambulances and the mortality rate of cases unattended by ambulances were the key drivers for the cost-effectiveness of the replacement strategies.
CONCLUSIONS: The cost-effectiveness model developed suggests that an ambulance replacement strategy of every 10 years should be considered by the MOH in planning sustainable EMS. While this model may have its own limitation and may require some modifications to suit the local context, it can be used as a guide for future economic evaluations of ambulance replacement strategies and further exploration of alternative solutions.