Displaying all 4 publications

Abstract:
Sort:
  1. Mohamed Isa SSP, Ablat A, Mohamad J
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438299 DOI: 10.3390/molecules23020400
    Plumeria rubra Linn of the family Apocynaceae is locally known in Malaysia as "Kemboja". It has been used by local traditional medicine practitioners for the treatment of arthritis-related disease. The LCMS/MS analysis of the methanol extract of flowers (PR-ME) showed that it contains 3-O-caffeyolquinic acid, 5-caffeoquinic acid, 1,3-dicaffeoquinic acid, chlorogenic acid, citric acid, 3,3-di-O-methylellagic acid, kaempferol-3-O-glucoside, kaempferol-3-rutinoside, kaempferol, quercetin 3-O-α-l-arabinopyranoside, quercetin, quinic acid and rutin. The flower PR-ME contained high amounts of phenol and flavonoid at 184.632 mg GAE/g and 203.2.2 mg QE/g, respectively. It also exhibited the highest DPPH, FRAP, metal chelating, hydrogen peroxide, nitric oxide superoxide radical scavenging activity. Similarly, the XO inhibitory activity in vitro assay possesses the highest inhibition effects at an IC50 = 23.91 μg/mL. There was no mortality or signs of toxicity in rats at a dose of 4 g/kg body weight. The administration of the flower PR-ME at doses of 400 mg/kg to the rats significantly reduced serum uric acid 43.77%. Similarly, the XO activity in the liver was significantly inhibited by flower PR-ME at doses of 400 mg/kg. These results confirm that the flower PR-ME of P. rubra contains active phytochemical compounds as detected in LCMS/MS that contribute to the inhibition of XO activity in vitro and in vivo in reducing acid uric level in serum and simultaneously scavenging the free radical to reduce the oxidative stress.
  2. Al Oweidi KF, Jamshed W, Goud BS, Ullah I, Usman, Mohamed Isa SSP, et al.
    Sci Rep, 2022 Nov 29;12(1):20597.
    PMID: 36446992 DOI: 10.1038/s41598-022-25010-x
    The formation of entropy in a mixed convection Casson nanofluid model with Arhenius activation energy is examined in this paper using magnetohydrodynamics (MHD). The expanding sheet, whose function of sheet velocity is nonlinear, confines the Casson nanofluid. The final equations, which are obtained from the first mathematical formulations, are solved using the MATLAB built-in solver bvp4c. Utilizing similarity conversion, ODEs are converted in their ultimate form. A number of graphs and tabulations are also provided to show the effects of important flow parameters on the results distribution. Slip parameter was shown to increase fluid temperature and decrease entropy formation. On the production of entropy, the Brinkman number and concentration gradient have opposing effects. In the presence of nanoparticles, the Eckert number effect's augmentation of fluid temperature is more significant. Furthermore, a satisfactory agreement is reached when the findings of the current study are compared to those of studies that have been published in the past.
  3. Jamshed W, Eid MR, Safdar R, Pasha AA, Mohamed Isa SSP, Adil M, et al.
    Sci Rep, 2022 Jul 07;12(1):11484.
    PMID: 35798787 DOI: 10.1038/s41598-022-15685-7
    In solar heating, ventilation, and air conditioning (HVAC), communications are designed to create new 3D mathematical models that address the flow of rotating Sutterby hybrid nanofluids exposed to slippery and expandable seats. The heat transmission investigation included effects such as copper and graphene oxide nanoparticles, as well as thermal radiative fluxing. The activation energy effect was used to investigate mass transfer with fluid concentration. The boundary constraints utilized were Maxwell speed and Smoluchowksi temperature slippage. With the utilization of fitting changes, partial differential equations (PDEs) for impetus, energy, and concentricity can be decreased to ordinary differential equations (ODEs). To address dimensionless ODEs, MATLAB's Keller box numerical technique was employed. Graphene oxide Copper/engine oil (GO-Cu/EO) is taken into consideration to address the performance analysis of the current study. Physical attributes, for example, surface drag coefficient, heat move, and mass exchange are mathematically processed and shown as tables and figures when numerous diverse factors are varied. The temperature field is enhanced by an increase in the volume fraction of copper and graphene oxide nanoparticles, while the mass fraction field is enhanced by an increase in activation energy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links