Displaying all 13 publications

Abstract:
Sort:
  1. Loganathan R, Mohammed BS
    Materials (Basel), 2021 Jul 05;14(13).
    PMID: 34279338 DOI: 10.3390/ma14133765
    To avoid explosive spalling during elevated temperature, crumb rubber (CR) is being added to the manufacturing of engineered cementitious composites (ECC). However, the addition of CR particles adversely affects the mechanical properties of ECC. Therefore, to overcome this issue, nano-silica (NS) is added into rubberized ECC mixture as cementitious material additives. Response surface methodology (RSM) has been utilized to optimize the mixtures of the rubberized ECC with variables: CR (0, 2.5, and 5 vol.%), polyvinyl alcohol (PVA) fiber (0, 1, and 2 vol.%), NS (0, 1, and 2 vol.%), and fly ash (0, 25, and 50 vol.%). The experimentally measured responses are flexural strength, direct tensile strength, elastic modulus, Poisson's ratio, creep, and drying shrinkage. Mathematical models to predict the targeted responses have been developed using RSM. As a result, a high correlation between the factors and responses has been exhibited by the developed models and the accuracy of fit, where less than 9.38% of the variation was found between the predicted and validated results. The experimental results revealed that the rubberized ECC with the incorporation of nano-silica exhibited a higher compressive strength, direct tensile strength, flexural strength, elastic modulus, Poisson's ratio, and lower drying shrinkage.
  2. Lye HL, Mohammed BS, Wahab MMA, Liew MS
    Materials (Basel), 2021 Jul 05;14(13).
    PMID: 34279334 DOI: 10.3390/ma14133761
    Emerging as a new technology, carbon fiber-reinforced polymer (CFRP) has been introduced to rehabilitate and strengthen steel structures using an adhesive agent. However, the outdoor service temperature is potentially degrading to the mechanical strength of the adhesive, as well as affecting the bonding of the strengthened steel structure. Therefore, this paper aims to investigate the bond relationship of CFRP-strengthened steel plates exposed to service temperatures. Two types of experiments were conducted to determine the tensile and flexural performance of CFRP-strengthened steel plates. The experiments were designed using a Box-Behnken design (BBD) and response surface methodology (RSM) by considering three parameters: service temperature (25 °C, 45 °C and 70 °C), number of CFRP layers (one, three and five layers) and bond length (40, 80 and 120 mm). The findings show the dominant failure mode transformed from adhesion failure between steel and adhesive interfaces to adhesion failure between CFRP and adhesive interfaces as the service temperature increased. The tensile strength improved by 25.62% when the service temperature increased. Field emission scanning electron microscope (FESEM) analysis proved that the strength enhancement is due to the densification and reduction of the adhesive particle microstructure gaps through the softening effect at service temperature. However, service temperature is found to have less impact on flexural strength. Incorporating the experimental results in RSM, two quadratic equations were developed to estimate the tensile and flexural strength of CFRP-strengthened steel plates. The high coefficient of determination, R2, yields at 0.9936 and 0.9846 indicate the high reliability of the models. Hence, it can be used as an estimation tool in the design stage.
  3. Shahrul S, Mohammed BS, Wahab MMA, Liew MS
    Materials (Basel), 2021 Sep 23;14(19).
    PMID: 34639894 DOI: 10.3390/ma14195496
    Crumb rubber (CR) from scrap tires is used as a partial replacement of fine aggregates in cement paste. This promotes the sustainable development of the environment, economy, and society, as waste tires are non-biodegradable and flammable. They occupy large landfill areas and are breeding grounds for mosquitoes and rodents. Inclusion of CR in mortar leads to several improvements on the mixture properties such as ductility, toughness, and impact resistance. However, it exhibits lower strengths and Modulus of Elasticity (ME). Therefore, to promote the use of mortar containing CR, it is vital to improve its mechanical strength. Past studies proved that nano-silica (NS) improves the strength of concrete due to the physico-chemical effects of NS. This study aims to examine the mechanical properties of crumb rubber mortar containing nano-silica (NS-CRM) and to develop models to predict these properties using Response Surface Methodology (RSM). Two variables were considered, CR as partial replacement to sand by volume (0%, 7.5%, 15%), and NS as partial replacement to cement by weight (0%, 2.5%, 5%). The results demonstrated a significant improvement in the mechanical properties of CRM when incorporating NS, and the models developed using RSM were acceptable with a 2% to 3% variation.
  4. Khurshid H, Mohammed BS, Bheel N, Cahyadi WA, Mukhtar H
    Heliyon, 2024 Aug 15;10(15):e35772.
    PMID: 39170505 DOI: 10.1016/j.heliyon.2024.e35772
    Currently, the field of structural health monitoring (SHM) is focused on investigating non-destructive evaluation techniques for the identification of damages in concrete structures. Magnetic sensing has particularly gained attention among the innovative non-destructive evaluation techniques. Recently, the embedded magnetic shape memory alloy (MSMA) wire has been introduced for the evaluation of cracks in concrete components through magnetic sensing techniques while providing reinforcement as well. However, the available research in this regard is very scarce. This study has focused on the analyses of parameters affecting the magnetic sensing capability of embedded MSMA wire for crack detection in concrete beams. The response surface methodology (RSM) and artificial neural network (ANN) models have been used to analyse the magnetic sensing parameters for the first time. The models were trained using the experimental data obtained through literature. The models aimed to predict the alteration in magnetic flux created by a concrete beam that has a 1 mm wide embedded MSMA wire after experiencing a fracture or crack. The results showed that the change in magnetic flux was affected by the position of the wire and the position of the crack with respect to the position of the magnet in the concrete beam. RSM optimisation results showed that maximum change in magnetic flux was obtained when the wire was placed at a depth of 17.5 mm from the top surface of the concrete beam, and a crack was present at an axial distance of 8.50 mm from the permanent magnet. The change in magnetic flux was 9.50 % considering the aforementioned parameters. However, the ANN prediction results showed that the optimal wire and crack position were 10 mm and 1.1 mm, respectively. The results suggested that a larger beam requires a larger diameter of MSMA wire or multiple sensors and magnets for crack detection in concrete beams.
  5. Hau Hong DL, Mohammed BS, Al-Fakih A, Wahab MMA, Liew MS, Amran YHM
    Materials (Basel), 2020 Jun 24;13(12).
    PMID: 32599798 DOI: 10.3390/ma13122831
    Engineered cementitious composite (ECC) was discovered as a new substitute of conventional concrete as it provides better results in terms of tensile strain, reaching beyond 3%. From then, more studies were done to partially replace crumb rubber with sand to achieve a more sustainable and eco-friendlier composite from the original ECC. However, the elastic modulus of ECC was noticeably degraded. This could bring potential unseen dangerous consequences as the fatigue might happen at any time without any sign. The replacement of crumb rubber was then found to not only bring a more sustainable and eco-friendlier result but also increase the ductility and the durability of the composite, with lighter specific gravity compared to conventional concrete. This study investigated the effects of crumb rubber (CR) and graphene oxide (GO) toward the deformable properties of rubberized ECC, including the compressive strength, elastic modulus, Poisson's ratio, and drying shrinkage. Central composite design (CCD) was utilized to provide 13 reasonable trial mixtures with the ranging level of CR replacement from 0-30% and that of GO from 0.01-0.08%. The results show that GO increased the strength of the developed GO-RECC. It was also found that the addition of CR and GO to ECC brought a notable improvement in mechanical and deformable properties. The predicted model that was developed using response surface methodology (RSM) shows that the variables (compression strength, elastic modulus, Poisson's ratio, and drying shrinkage) rely on the independent (CR and GO) variables and are highly correlated.
  6. Sabapathy L, Mohammed BS, Al-Fakih A, Wahab MMA, Liew MS, Amran YHM
    Materials (Basel), 2020 Jul 13;13(14).
    PMID: 32668788 DOI: 10.3390/ma13143125
    The objective of this research was to determine the durability of an engineered cementitious composite (ECC) incorporating crumb rubber (CR) and graphene oxide (GO) with respect to resistance to acid and sulphate attacks. To obtain the mix designs used for this study, response surface methodology (RSM) was utilized, which yielded the composition of 13 mixes containing two variables (crumb rubber and graphene oxide). The crumb rubber had a percentage range of 0-10%, whereas the graphene oxide was tested in the range of 0.01-0.05% by volume. Three types of laboratory tests were used in this study, namely a compressive test, an acid attack test to study its durability against an acidic environment, and a sulphate attack test to examine the length change while exposed to a sulphate solution. Response surface methodology helped develop predictive responsive models and multiple objectives that aided in the optimization of results obtained from the experiments. Furthermore, a rubberized engineered cementitious composite incorporating graphene oxide yielded better chemical attack results compared to those of a normal rubberized engineered cementitious composite. In conclusion, nano-graphene in the form of graphene oxide has the ability to enhance the properties and overcome the limitations of crumb rubber incorporated into an engineered cementitious composite. The optimal mix was attained with 10% crumb rubber and 0.01 graphene oxide that achieved 43.6 MPa compressive strength, 29.4% weight loss, and 2.19% expansion. The addition of GO enhances the performance of rubberized ECC, contributing to less weight loss due to the deterioration of acidic media on the ECC. It also contributes to better resistance to changes in the length of the rubberized ECC samples.
  7. Haruna S, Mohammed BS, Wahab MMA, Kankia MU, Amran M, Gora AM
    Materials (Basel), 2021 Jul 27;14(15).
    PMID: 34361355 DOI: 10.3390/ma14154160
    This research aims to study the effect of the dosage of anhydrous sodium metasilicate activator on the long-term properties of fly ash-based one-part alkali-activated binders (OPAAB) cured at ambient conditions. Powdered sodium metasilicate activator was utilized in the range of 8-16% by weight of the fly ash in producing the OPAAB. The properties examined are hardened density, compressive strength, flexural strength, water absorption, efflorescence formation, and microstructural analysis. The experimental result revealed that the binders exhibited excellent long-term strength properties. The compressive strength of the OPAAP is well correlated with its hardened density. The pastes were found to exhibit good soundness characteristics over the long-term. The absorption of water decreases with an increase in the activator dosage from 8-12%, and beyond that, the water absorption relatively remains the same. Field emission scanning electron microscope (FESEM) micrograph revealed uniformly formed solid matrices with the micro-crack present were observed in the samples. The larger pore size promotes the crystallization of the resulting hydrate substances (N, C)-A-S-H gel. The initial dissolution of the OPAAP occurred within the first 30 min. At longer age of curing, mixtures with a higher dosage of powdered activator tend to absorb less water. Strength properties beyond 28 days are considered as the long-term strength.
  8. Murali M, Mohammed BS, Abdulkadir I, Liew MS, Alaloul WS
    Materials (Basel), 2021 Jun 16;14(12).
    PMID: 34208431 DOI: 10.3390/ma14123322
    Waste tire and fly ash (FA) are two waste materials whose disposal and rapid rate of accumulation are among the pressing sources of concern and threat to the environment. Although much research exists on the use of these materials in cementitious composites, very little literature is available on the effectiveness of combining them in high volumes for concrete production. This work aimed to utilize crumb rubber (CR) from waste tires as a partial replacement of fine aggregate at 15%, 22.25%, and 30% by volume, and high-volume fly ash (HVFA) replacement of cement at 50%, 60%, and 70% (by weight of cementitious materials) to produce high-volume fly ash-crumb rubber concrete (HVFA-CRC). Using the central composite design (CCD) option of the response surface methodology (RSM), 13 mixes were produced with different combinations and levels of the CR and FA (the input factors) on which the responses of interest (compressive, flexural, and tensile strengths) were experimentally investigated. Furthermore, the composite influence of CR and HVFA on the workability of the concrete was assessed using the slump test. The results showed a decline in the mechanical properties with increasing replacement levels of the CR and HVFA. However, up to 22.25% and 60% of CR and HVFA replacements, respectively, produced a structural HVFA-CRC with a compressive strength of more than 20 MPa at 28 days. Response predictive models were developed and validated using ANOVA at a 95% confidence level. The models had high R2 values ranging from 95.26 to 97.74%. Multi-objective optimization was performed and validated with less than 5% error between the predicted and experimental responses.
  9. Mohammed BS, Haruna S, Wahab MMA, Liew MS, Haruna A
    Heliyon, 2019 Sep;5(9):e02255.
    PMID: 31687531 DOI: 10.1016/j.heliyon.2019.e02255
    In this present experimental study, geopolymer cement is developed using high calcium fly ash and used in the production of one-part alkali-activated binders. At 8-16 percent of the total precursor materials, the HCFA was activated with anhydrous sodium metasilicate powder and cured in ambient condition. Five mixtures of one-part geopolymer paste were intended at a steady w/b proportion. Density, flowability, setting time, compressive strength, splitting tensile strength and molar ratio impact were envisaged. It was observed that the setting time of the designed one-part geopolymer paste decreases with higher activator content. The experimental findings showed that the resistance of one-part geopolymer cement paste increases with comparatively greater activator content. However, raising the granular activator beyond 12 percent by fly ash weight decreases the strength and workability of the established one-part geopolymer cement. The optimum mix by weight of the fly ash was discovered to be 12 percent (i.e. 6 percent Na2O). At 28 days of curing, one-part alkali-activated paste recorded the greatest compressive strength of almost 50 MPa. The density of the one-part geopolymer paste is nearly the same regardless of the mixes. Microstructural assessment by FESEM, FTIR and XRD has shown that the established geopolymer paste includes quartz, pyrrhotite, aluminosilicate sodium and hydrate gels of calcium aluminosilicate. Based on the experimental information acquired, it can be deduced that the strength growth of one-part geopolymer cement is similar to that of Portland cement.
  10. Liew MS, Aswin M, Danyaro KU, Mohammed BS, Al-Yacouby AM
    Materials (Basel), 2020 May 26;13(11).
    PMID: 32466366 DOI: 10.3390/ma13112428
    In relation to the use of retrofit materials on damaged constructions, application on earthquake-resistant buildings, and for the strengthening and rehabilitation on weakened regions, there is a need for a more superior material than concrete. Application sites include beam-column joints, corbels, link-slabs, deep beams, support regions and dapped-end areas. Fiber reinforced engineered cementitious composites (FR-ECC) can address this issue, because FR-ECC is one of the composite materials that has high strength, ductility and durability. In order to develop FR-ECC, this study was done to investigate the effect of adding quartz powder on the compressive strength capacity and properties of FR-ECC through the use of polyvinyl alcohol (PVA) and steel fibers. The volume fraction of fiber was set to 0%-2%. To support the friendly environment, FR-ECC uses by-product materials such as fly ash and silica fume, with a cement content less than 600 kg/m3. In terms of the experimental investigation on FR-ECC, this work conducted the fresh property tests showing that PVA fibers have quite an influence on ECC workability, due to their hydrophilic behavior. By adjusting the superplasticizer (SP) content, the consistency and high workability of the ECC mixes have been achieved and maintained. The test results indicated that the PVA and steel fibers-based ECC mixes can be classified as self-compacting composites and high early compressive strength composites. Significantly, addition of quartz powder into the ECC mixes increased the compressive strength ratio of the ECC samples up to 1.0747. Furthermore, the steel fiber-based ECC samples exhibited greater compressive strength than the PVA fibers-based ECC samples with the strength ratio of 1.1760. Due to effect of the pozzolanic reaction, the fibers dispersion and orientation in the fresh ECC mixes, so that the cementitious matrices provided the high strength on the FR-ECC samples. During the compression loading, the bulging effect always occurred before the failures of the fibers-based ECC samples. No spalling occurred at the time of rupture and the collapse occurred slowly. Thus, FR-ECC has provided unique characteristics, which will reduce the high cost of maintenance.
  11. Rahim NI, Mohammed BS, Al-Fakih A, Wahab MMA, Liew MS, Anwar A, et al.
    Materials (Basel), 2020 Jun 22;13(12).
    PMID: 32580327 DOI: 10.3390/ma13122804
    Deep beams are more susceptible to shear failure, and therefore reparation is a crucial for structural reinforcements. Shear failure is structural concrete failure in nature. It generally occurs without warning; however, it is acceptable for the beam to fail in bending but not in shear. The experimental study presented the structural behavior of the deep beams of reinforced concrete (RC) that reinforces the web openings with externally connected carbon fiber reinforced polymer (CFRP) composite in the shear zone. The structural behavior includes a failure mode, and cracking pattern, load deflection responses, stress concentration and the reinforcement factor were investigated. A total of nine reinforced concrete deep beams with openings strengthened with CFRP and one control beam without an opening have been cast and tested under static four-point bending load till failure. The experimental results showed that the increase the size of the opening causes an increase in the shear strength reduction by up to 30%. Therefore, the larger the openings, the lower the capability of load carriage, in addition to an increase in the number of CFRP layers that could enhance the load carrying capacity. Consequently, utilization of the CFRP layer wrapping technique strengthened the shear behavior of the reinforced concrete deep beams from about 10% to 40%. It was concluded that the most effective number of CFRP layers for the deep beam with opening sizes of 150 mm and 200 mm were two layers and three layers, respectively.
  12. Al-Nini A, Nikbakht E, Syamsir A, Shafiq N, Mohammed BS, Al-Fakih A, et al.
    Materials (Basel), 2020 Jul 09;13(14).
    PMID: 32659956 DOI: 10.3390/ma13143064
    The concrete-filled double skin steel tube (CFDST) is a more viable option compared to a concrete-filled steel tube (CFST) due to consisting a hollow section, while degradation is enhanced simply by using carbon fiber-reinforced polymer (CFRP). Hence, the stabilization of a concrete's ductile strength needs high- performance fiber-reinforced cementitious conmposite. This study investigates the behavior of high-performance fiber-reinforced cementitious composite-filled double-skin steel tube (HPCFDST) beams strengthened longitudinally with various layers, lengths, and configurtion of CFRP sheets. The findings showed that, with increased CFRP layers, the moment capacity and flexural stiffness values of the retrofitted HPCFDST beams have significantly improved. For an instant, the moment capacity of HPCFDST beams improved by approximately 28.5% and 32.6% when they were wrapped partially along 100% with two and three layers, respectively, compared to the control beam. Moreover, the moment capacity of the HPCFDST beam using two partial layers of CFRP along 75% of its sufficient length was closed to the findings of the beam with two full CFRP layers. For energy absorption, the results showed a vast disparity. Only the two layers with a 100% full length and partial wrapping showed increasing performance over the control. Furthermore, the typical failure mode of HPCFDST beams was observed to be local buckling at the top surface near the point of loading and CFRP rapture at the bottom of effect length.
  13. Kankia MU, Baloo L, Danlami N, Samahani WN, Mohammed BS, Haruna S, et al.
    Materials (Basel), 2021 Oct 22;14(21).
    PMID: 34771834 DOI: 10.3390/ma14216308
    In the industries of petroleum extraction, a large volume of oily sludge is being generated. This waste is usually considered difficult to dispose of, causing environmental and economic issues. This study presented the novel experimental method of manufacturing mortar used in civil construction by cement and oily sludge ash (OSA). The defined method was described with a logical experimental study conducted to examine a feasible manufacturing method for casting cement-based mortars by partially replacing cement with OSA. Replacement concentrations for OSA ranged from 0 to 20 percent by cement weight, while the water-to-cement (w/c) ratio was varied from 0.4 to 0.8, and the amount of sand was kept constant. The strengths and absorption rate of the mortar were monitored for 28 days. The OSA contains a crystalline structure with packs of angular grains. Because of OSA in the cement-based mortar mixtures and water-to-cement ratios, the mechanical strength was improved significantly. However, the water absorption trend increased linearly. Using variance analysis, the influence of OSA and w/c ratio on the behavior of mortar was acquired. The developed models were significant for all p-value reactions of <5%. Numerical optimization results showed that the best mixture can be obtained by replacing 8.19 percent cement with OSA and 0.52 as a ratio of w/c.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links