METHODS: Three databases (PubMed, Scopus, and Google Scholar) were used to search for original papers submitted between 2013 and 2023, using the Medical Subject Heading (MeSH) terms "agar-wood" crossed with the terms "antimicrobial" and/or "anti-inflammatory". Synonyms and relevant search terms were also searched.
RESULTS: The most-studied agarwood for antimicrobial and anti-inflammatory agents is Aquilaria sinensis. Some studies have shown its potential application as a potent inhibitor of fungi, including Lasiodiplodia theobromae, Fusarium oxysporum, and Candida albicans. Moreover, it is capable of inhibiting Bacillus subtilis and Staphylococcus aureus activities. Several chromones detected in agarwood have been shown to inhibit NF-κB activation, LPS-induced NO production, and superoxide anion generation. In conclusion, more research is needed, particularly regarding future intervention studies, to enhance our knowledge and understanding of agarwood and its isolates.
CONCLUSIONS: This review reveals that despite the absence of clinical trials, agarwood exhibits antimicrobial and anti-inflammatory properties.