Fruit juice is an essential food product that has received significant acceptance among consumers. Harmonized concentration, preservation of nutritional constituents, and heat-responsive sensorial of fruit juices are demanding topics in food processing. Membrane separation is a promising technology to concentrate juice at minimal pressure and temperatures with excellent potential application in food industries from an economical, stable, and standard operation view. Microfiltration (MF) and ultrafiltration (UF) have also interested fruit industries owing to the increasing demand for reduced pressure-driven membranes. UF and MF membranes are widely applied in concentrating, clarifying, and purifying various edible products. However, the rising challenge in membrane technology is the fouling propensity which undermines the membrane's performance and lifespan. This review succinctly provides a clear and innovative view of the various controlling factors that could undermine the membrane performance during fruit juice clarification and concentration regarding its selectivity and permeance. In this article, various strategies for mitigating fouling anomalies during fruit juice processing using membranes, along with research opportunities, have been discussed. This concise review is anticipated to inspire a new research platform for developing an integrated approach for the next-generation membrane processes for efficient fruit juice clarification.
Water is a critical resource necessary for life to be sustained, and its availability should be secured, appropriated, and easily obtainable. The continual detection of endocrine-disrupting chemicals (EDCs) (ng/L or µg/L) in water and wastewater has attracted critical concerns among the regulatory authorities and general public, due to its associated public health, ecological risks, and a threat to global water quality. Presently, there is a lack of stringent discharge standards regulating the emerging multiclass contaminants to obviate its possible undesirable impacts. The conventional treatment processes have reportedly ineffectual in eliminating the persistent EDCs pollutants, necessitating the researchers to develop alternative treatment methods. Occurrences of the EDCs and the attributed effects on humans and the environment are adequately reviewed. It indicated that comprehensive information on the recent advances in the rejection of EDCs via a novel membrane and membrane bioreactor (MBR) treatment techniques are still lacking. This paper critically studies and reports on recent advances in the membrane and MBR treatment methods for removing EDCs, fouling challenges, and its mitigation strategies. The removal mechanisms and the operating factors influencing the EDCs remediation were also examined. Membranes and MBR approaches have proven successful and viable to eliminate various EDCs contaminants.
Recently Bisphenol A (BPA) is one of the persistent trace hazardous estrogenic contaminants in the environment, that can trigger a severe threat to humans and environment even at minuscule concentrations. Thus, this work focused on the synthesis of neat and magnetic biochar (BC) as a sustainable and inexpensive adsorbent to remove BPA from aqueous environment. Novel magnetic biochar was efficiently synthesized by utilizing palm kernel shell, using ferric chloride and ferrous chloride as magnetic medium via chemical co-precipitation technique. In this experimental study, the influence of operating factors comprising contact time (20-240 min), pH (3.0-12.0), adsorbent dose (0.2-0.8 g), and starting concentrations of BPA (8.0-150 ppm) were studied in removing BPA during batch adsorption system using neat biochar and magnetic biochar. It was observed that the magnetically loaded BC demonstrates superior maximum removal efficiency of BPA with 94.2%, over the neat biochar. The functional groups (FTIR), Zeta potential, vibrating sample magnetometer (VSM), surface and textural properties (BET), surface morphology, and mineral constituents (FESEM/EDX), and chemical composition (XRD) of the adsorbents were examined. The experimental results demonstrated that the sorption isotherm and kinetics were suitably described by pseudo-second-order model and Freundlich model, respectively. By studying the adsorption mechanism, it was concluded that π-π electron acceptor-donor interaction (EAD), hydrophobic interaction, and hydrogen bond were the principal drives for the adsorption of BPA onto the neat BC and magnetic BC.
Single-screw extrusion of a fibrous-structured meat analog from soy proteins added with low-grade oyster mushroom was successful. Satisfactory extrudates were obtained at a barrel temperature of 140 °C, screw speed range of 100-160 rpm, and oyster mushroom addition at 0%, 7.5%, and 15% via factorial experiments. Single-screw extrusion equipped with a slit die successfully produced expanded oyster mushroom-soy protein extrudates. However, the increase in the oyster mushroom content significantly decreased (p ≤ 0.05) the expansion ratio of the extrudate from 1.26 to 0.98. This result indicated that adding more oyster mushroom restrained the expansion ratio. The extrudates had a medium density range (max of 1393.70 ± 6.30 kg/m3). By adding oyster mushroom, the extrudates attained a higher moisture content (range = 34.77% to 37.93%) compared with the extrudates containing the protein mixture only (range = 26.99% to 32.33%). The increase in screw speed and oyster mushroom significantly increased (p ≤ 0.05) the water absorption index. The increase in the texturization index was significantly influenced (p ≤ 0.05) by oyster mushroom addition rather than the screw speed. A defined fibrous structure supported the high texturization index and small shape of air cells observed in the extrudates.
In recent years, downstream bioprocessing industries are venturing into less tedious, simple, and high-efficiency separation by implementing advanced purification and extraction methods. This review discusses the separation of proteins, with the main focus on amylase as an enzyme from agricultural waste using conventional and advanced techniques of extraction and purification via a liquid biphasic system (LBS). In comparison to other methods, such as membrane extraction, precipitation, ultrasonication, and chromatography, the LBS stands out as an efficient, cost-effective, and adaptable developing method for protein recovery. The two-phase separation method can be water-soluble polymers, or polymer and salt, or alcohol and salt, which is a simpler and lower-cost method that can be used at a larger purification scale. The comparison of different approaches in LBS for amylase purification from agricultural waste is also included. Current technology has evolved from a simple LBS into microwave-assisted LBS, liquid biphasic flotation (LBF), thermoseparation (TMP), three-phase partitioning (TPP), ultrasound-assisted LBS, and electrically assisted LBS. pH, time, temperature, and concentration are some of the significant research parameters considered in the review of advanced techniques.
According to the Food Wastage Footprint and Climate Change Report, about 15% of all fruits and 25% of all vegetables are wasted at the base of the food production chain. The significant losses and wastes in the fresh and processing industries is becoming a serious environmental issue, mainly due to the microbial degradation impacts. There has been a recent surge in research and innovation related to food, packaging, and pharmaceutical applications to address these problems. The underutilized wastes (seed, skin, rind, and pomace) potentially present good sources of valuable bioactive compounds, including functional nutrients, amylopectin, phytochemicals, vitamins, enzymes, dietary fibers, and oils. Fruit and vegetable wastes (FVW) are rich in nutrients and extra nutritional compounds that contribute to the development of animal feed, bioactive ingredients, and ethanol production. In the development of active packaging films, pectin and other biopolymers are commonly used. In addition, the most recent research studies dealing with FVW have enhanced the physical, mechanical, antioxidant, and antimicrobial properties of packaging and biocomposite systems. Innovative technologies that can be used for sensitive bioactive compound extraction and fortification will be crucial in valorizing FVW completely; thus, this article aims to report the progress made in terms of the valorization of FVW and to emphasize the applications of FVW in active packaging and biocomposites, their by-products, and the innovative technologies (both thermal and non-thermal) that can be used for bioactive compounds extraction.