Displaying all 2 publications

Abstract:
Sort:
  1. Othman SA, Majawit LP, Wan Hassan WN, Wey MC, Mohd Razi R
    PLoS One, 2016;11(10):e0164180.
    PMID: 27706220 DOI: 10.1371/journal.pone.0164180
    To establish the three-dimensional (3D) facial soft tissue morphology of adult Malaysian subjects of the Malay ethnic group; and to determine the morphological differences between the genders, using a non-invasive stereo-photogrammetry 3D camera.
  2. Reduwan NH, Abdul Aziz AA, Mohd Razi R, Abdullah ERMF, Mazloom Nezhad SM, Gohain M, et al.
    BMC Oral Health, 2024 Feb 19;24(1):252.
    PMID: 38373931 DOI: 10.1186/s12903-024-03910-w
    BACKGROUND: Artificial intelligence has been proven to improve the identification of various maxillofacial lesions. The aim of the current study is two-fold: to assess the performance of four deep learning models (DLM) in external root resorption (ERR) identification and to assess the effect of combining feature selection technique (FST) with DLM on their ability in ERR identification.

    METHODS: External root resorption was simulated on 88 extracted premolar teeth using tungsten bur in different depths (0.5 mm, 1 mm, and 2 mm). All teeth were scanned using a Cone beam CT (Carestream Dental, Atlanta, GA). Afterward, a training (70%), validation (10%), and test (20%) dataset were established. The performance of four DLMs including Random Forest (RF) + Visual Geometry Group 16 (VGG), RF + EfficienNetB4 (EFNET), Support Vector Machine (SVM) + VGG, and SVM + EFNET) and four hybrid models (DLM + FST: (i) FS + RF + VGG, (ii) FS + RF + EFNET, (iii) FS + SVM + VGG and (iv) FS + SVM + EFNET) was compared. Five performance parameters were assessed: classification accuracy, F1-score, precision, specificity, and error rate. FST algorithms (Boruta and Recursive Feature Selection) were combined with the DLMs to assess their performance.

    RESULTS: RF + VGG exhibited the highest performance in identifying ERR, followed by the other tested models. Similarly, FST combined with RF + VGG outperformed other models with classification accuracy, F1-score, precision, and specificity of 81.9%, weighted accuracy of 83%, and area under the curve (AUC) of 96%. Kruskal Wallis test revealed a significant difference (p = 0.008) in the prediction accuracy among the eight DLMs.

    CONCLUSION: In general, all DLMs have similar performance on ERR identification. However, the performance can be improved by combining FST with DLMs.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links