Childhood-onset systemic lupus erythematosus is a rare disease that is more prevalent in Southeast Asian children than in Western children. It is characterised by a peripubertal onset and a female predominance that rises with age. Haematological, renal, and mucocutaneous are among the frequently involved organs upon diagnosis. Some of the typical symptoms include cutaneous vasculitis, malar rash, and fever. Patients frequently had proliferative class IV lupus nephritis, which increases disease activity and kidney damage. We reported a child presented with fever associated with multiple joint pain, skin rashes over the fingers of the right hand, and generalised abdominal pain.
The receptors for IL-35, IL-12Rβ2 and gp130, have been implicated in the inflammatory pathophysiology of autoimmune diseases. In this study, we set out to investigate the serum IL-35 levels and the surface levels of IL-12Rβ2 and gp130 in CD3+CD4+, CD3+CD4─ and CD3─CD4─ lymphocyte subpopulations in systemic lupus erythematosus (SLE) patients (n=50) versus healthy controls (n=50). The potential T cell subsets associated with gp130 transcript (i.e. IL6ST) expression in CD4+ T cells of SLE patients was also examined in publicly-available gene expression profiling (GEP) datasets. Here, we report that serum IL-35 levels were significantly higher in SLE patients than healthy controls (p=0.038) but it was not associated with SLEDAI-2K scores. The proportions of IL-12Rβ2+ and gp130+ cells in SLE patients did not differ significantly with those of healthy controls in all lymphocyte subpopulations investigated. Essentially, higher SLEDAI-2K scores were positively correlated with increased proportion of gp130+ cells, but not IL-12Rβ2+ cells, on CD3+CD4+ T cells (r=0.425, p=0.002, q=0.016). Gene Set Enrichment Analysis (GSEA) of a GEP dataset of CD4+ T cells isolated from SLE patients (n=8; GSE4588) showed that IL6ST expression was positively associated with genes upregulated in CD4+ T cells vs myeloid or B cells (q<0.001). In an independent GEP dataset of CD4+ T cells isolated from SLE patients (n=9; GSE1057), IL6ST expression was induced upon anti-CD3 stimulation, and that Treg, TCM and CCR7+ T cells gene sets were significantly enriched (q<0.05) by genes highly correlated with IL6ST expression (n=92 genes; r>0.75 with IL6ST expression) upon anti-CD3 stimulation in these SLE patients. In conclusion, gp130 signaling in CD3+CD4+ T cell subsets may contribute to increased disease activity in SLE patients, and it represents a promising therapeutic target for inhibition in the disease.
The IL-23/IL-17 axis plays causative roles in the development and progression of systemic lupus erythematosus (SLE). However, it remains unclear if the IL-17RA+ and IL-23R+ T helper (Th) cells populations are associated with the serum IL-17 and IL-23 levels, or with the immunological parameters and disease activities in SLE patients. Herein, we examined the proportion of IL-17RA+ and IL-23R+ Th cells and serum levels of IL-17 and IL-23 in established SLE patients (n = 50) compared with healthy controls (n = 50). The associations of these interleukins and their receptors with immunological parameters [anti-nuclear antibody (ANA), anti-dsDNA antibody, and C-reactive protein (CRP)] and SLE disease activity (SLEDAI-2K scores) in SLE patients were assessed. CD3+CD4+ Th cells of SLE patients demonstrated significantly elevated IL-17RA+ (p = 1.12 x 10-4) or IL-23R+ (p = 1.98 x 10-29) populations compared with the healthy controls. Serum IL-17 levels were significantly lower in SLE patients compared with the healthy controls (p = 8.32 x 10-5), while no significant difference was observed for the IL-23 serum levels between both groups. IL-23R+ Th cells population was significantly associated with higher SLEDAI-2K scores (p = 0.017). In multivariate analysis, the proportion of IL-23R+ Th cells remained significantly associated with higher SLEDAI-2K scores independent of prednisolone intake (p = 0.027). No associations were observed between the interleukin parameters (i.e., IL-17, IL-23, IL-17RA+ Th cells, and IL-23R+ Th cells) with ANA, anti-dsDNA, and CRP status, suggesting that the IL-17/IL-23 axis acts independently of these immunological parameters. In conclusion, our results support that therapeutic inhibition of the IL-23/IL-17 axis receptors on Th cells, particularly IL-23R, is potentially relevant in SLE patients.