Regulation on occupational safety and health in Malaysia had evolved from the prescriptive Factory and Machinery Act (1967) to a self-regulated Occupational Safety and Health Act (1994). However, from the authors’ observation the high standards of occupational safety and health culture that surpass the legal requirement were not widely practiced by small and medium enterprises (SMEs). The two main objectives of this study are: first, to identify and determine the level of conformity; and second, to investigate the reasons of nonconformity to Occupational Safety and Health Act (1994) regulation in SMEs involved the chemical industry sub-sectors. The survey questionnaire was distributed to 150 SMEs in chemical industry sub-sectors. Forty one of the survey questionnaires were completed and returned, giving a response rate of 27.3% for the survey. The survey results revealed that an overwhelming majority (92.7%) of the respondents from SMEs are likely not conforming to the basic requirement of Occupational Safety and Health Act (1994). In addition to this, the survey also found that only 3.1% of the management personnel can be considered competent in terms of knowledge, skill and ability in carrying out occupational safety and health regulation within their respective organization. While, 96.9% of the respondents that participated in the survey can be considered not competent. The authors hope the result of this survey could assist the relevant authorities in formulating a better policy and strategy for implementing occupational safety and health in SMEs involved in chemical industry sub-sectors.
Working environmental conditions in automotive industry are very challenging to the human workers. Meanwhile, products quality is very much dependent on workers’ health, safety and comfort in their working environment. Environmental factors, such as temperature, illuminance and humidity levels have significant effect on workers’ performance at the production line. In this experiment, temperature, humidity, illuminance levels and productivity rate were observed in a control room. An automotive manufacturing firm production line was chosen to be simulated in the control room to observe the temperature, relative humidity, illuminance and worker’s productivity rate. The experimental data collected was analyzed using Response Surface Method (RSM). RSM is an analysis technique, which combined statistical systems and mathematical methods. It can be applied for research and development, reform and optimize a process, which involves several design variables. As a result, the combined effect of temperature, illuminance and humidity toward productivity can be clearly seen. Optimum environmental factor cannot be predicted using first order RSM analysis because it gives low reliability for obtaining the optimum level. Thus, a second order RSM analysis was generated for obtaining the optimum level of environmental factors.
Environmental factors such as temperature, lighting and noise have very significant impact to workers’ health, safety, comfort, performance and productivity. In an ergonomically design industrial work environment, these factors need to be control at their optimum levels. The main objective of this study is to find the effect of temperature, illuminance and sound pressure level on workers’ productivity in automotive industry. To perform this study a workstation in an automotive component manufacturing was selected as the location of the study. Results of data analysis showed there were relationships between temperature, illuminance and noise on workers’ productivity. Later, the authors’ developed multiple linear equation models to represent the relationships between temperature, illuminance and noise on the workers’ productivity. These multiple linear equation models could be used to predict the production rate for the workstation by referring to the value of temperature, illuminance and noise level.