Displaying all 4 publications

Abstract:
Sort:
  1. Zengin G, Abdallah HH, Dogan A, Mollica A, Aumeeruddy-Elalfi Z, Mahomoodally MF
    Food Chem Toxicol, 2018 Jan;111:423-431.
    PMID: 29198858 DOI: 10.1016/j.fct.2017.11.055
    The potentiality of bioactive phenolic compounds may result in plant extracts having multiple biological activities. The aim of this study was to investigate into the biological activities of the methanolic, ethyl acetate, and water extracts of Tchihatchewia isatidea Boiss, an endemic medicinal plant of Turkey. The phenolic compositions of the extracts were confirmed using RP-HPLC. Extracts were screened for their potential antioxidant through a panoply of assays; their anti-diabetic potential, and plausible inhibitory activity against tyrosinase and acetylcholinesterase. Molecular modelling methods were also used to assess the docking properties of phenolic compounds on tyrosinase. The major and most abundant compounds were rosmarinic acid (570 ± 14 μg/g extract in the methanolic extract), ferrulic acid (336 ± 6 μg/g extract in the methanolic extract), (+)-catechin (340 ± 4 μg/g extract in the water extract), apigenin (182 ± 4 μg/g extract in the methanolic extract), and epicatechin (188 ± 12 μg/g extract in the water extract). Radical scavenging, reducing capacity, and metal chelating activities were detected in the extracts, with preponderance activity observed in the methanolic extract. In conclusion, the potential clinical applications observed during this study may provide new insights into the molecular aspect particularly for neuroprotective and anti-diabetic mechanisms involving oxidative stress.
  2. Zengin G, Rodrigues MJ, Abdallah HH, Custodio L, Stefanucci A, Aumeeruddy MZ, et al.
    Comput Biol Chem, 2018 Dec;77:178-186.
    PMID: 30336375 DOI: 10.1016/j.compbiolchem.2018.10.005
    The genus Silene is renowned in Turkey for its traditional use as food and medicine. Currently, there are 138 species of Silene in Turkey, amongst which have been several studies for possible pharmacological potential and application in food industry. However, there is currently a paucity of data on Silene salsuginea Hub.-Mor. This study endeavours to access its antioxidant, enzyme inhibitory, and anti-inflammatory properties. Besides, reversed-phase high-performance liquid chromatography-diode array detector (RP-HPLC-DAD) was used to detect phenolic compounds, and molecular docking was performed to provide new insights for tested enzymes and phenolics. High amounts of apigenin (534 μg/g extract), ferulic acid (452 μg/g extract), p-coumaric acid (408 μg/g extract), and quercetin (336 μg/g extract) were detected in the methanol extract while rutin (506 μg/g extract) was most abundant in the aqueous extract. As for their biological properties, the methanol extract exhibited the best antioxidant effect in the DPPH and CUPRAC assays, and also the highest inhibition against tyrosinase. The aqueous extract was the least active enzyme inhibitor but showed the highest antioxidant efficacy in the ABTS, FRAP, and metal chelating assays. At a concentration of 15.6 μg/mL, the methanol extract resulted in a moderate decrease (25.1%) of NO production in lipopolysaccharide-stimulated cells. Among the phenolic compounds, epicatechin, (+)-catechin, and kaempferol showed the highest binding affinity towards the studied enzymes in silico. It can be concluded that extracts of S. salsuginea are a potential source of functional food ingredients but need further analytical experiments to explore its complexity of chemical compounds and pharmacological properties as well as using in vivo toxicity models to establish its maximum tolerated dose.
  3. Saleem H, Zengin G, Locatelli M, Ahmad I, Khaliq S, Mahomoodally MF, et al.
    Food Chem Toxicol, 2019 Sep;131:110535.
    PMID: 31154083 DOI: 10.1016/j.fct.2019.05.043
    This study endeavours to investigate the phytochemical composition, biological properties and in vivo toxicity of methanol and dichloromethane extracts of Zaleya pentandra (L.) Jeffrey. Total bioactive contents, antioxidant (phosphomolybdenum and metal chelating, DPPH, ABTS, FRAP and CUPRAC) and enzyme inhibition (cholinesterases, tyrosinase α-amylase, and α-glucosidase) potential were assessed utilizing in vitro bioassays. UHPLC-MS phytochemical profiling was carried out to identify the essential compounds. The methanol extract was found to contain highest phenolic (22.60 mg GAE/g) and flavonoid (31.49 mg QE/g) contents which correlate with its most significant radical scavenging, reducing potential and tyrosinase inhibition. The dichloromethane extract was most potent for phosphomolybdenum, ferrous chelation, α-amylase, α-glucosidase, and cholinesterase inhibition assays. UHPLC-MS analysis of methanol extract unveiled to identify 11 secondary metabolites belonging to five sub-groups, i.e., phenolic, alkaloid, carbohydrate, terpenoid, and fatty acid derivatives. Additionally, in vivo toxicity was conducted for 21 days and the methanol extract at different doses (150, 200, 250 and 300 mg/kg) was administered in experimental chicks divided into five groups each containing five individuals. Different physical, haematological and biochemical parameters along with the absolute and relative weight of visceral body organs were studied. Overall, no toxic effect was noted for the extract at tested doses.
  4. Bender O, Shoman ME, Ali TFS, Dogan R, Celik I, Mollica A, et al.
    Arch Pharm (Weinheim), 2023 Feb;356(2):e2200407.
    PMID: 36403191 DOI: 10.1002/ardp.202200407
    FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) patients. In the current study, the oxindole chemotype is employed as a structural motif for the design of new FLT3 inhibitors as potential hits for AML irradiation. Cell-based screening was performed with 18 oxindole derivatives and 5a-c inhibited 68%-73% and 83%-91% of internal tandem duplication (ITD)-mutated MV4-11 cell growth for 48- and 72-h treatments while only 0%-2% and 27%-39% in wild-type THP-1 cells. The most potent compound 5a inhibited MV4-11 cells with IC50 of 4.3 µM at 72 h while it was 8.7 µM in THP-1 cells, thus showing two-fold selective inhibition against the oncogenic ITD mutation. The ability of 5a to modulate cell death was examined. High-throughput protein profiling revealed low levels of the growth factors IGFBP-2 and -4 with the blockage of various apoptotic inhibitors such as Survivin. p21 with cellular stress mechanisms was characterized by increased expression of HSP proteins along with TNF-β. Mechanistically, compounds 5a and 5b inhibited FLT3 kinase with IC50 values of 2.49 and 1.45 µM, respectively. Theoretical docking studies supported the compounds' ability to bind to the FLT3 ATP binding site with the formation of highly stable complexes as evidenced by molecular dynamics simulations. The designed compounds also provide suitable drug candidates with no violation of drug likeability rules.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links