Displaying all 4 publications

Abstract:
Sort:
  1. Morsin M, Mat Salleh M, Ali Umar A, Sahdan MZ
    Sensors (Basel), 2017 Apr 25;17(5).
    PMID: 28441323 DOI: 10.3390/s17050947
    Localized surface plasmon resonance (LSPR) properties of metallic nanostructures, such as gold, are very sensitive to the dielectric environment of the material, which can simply be adjusted by changing its shape and size through modification of the synthesizing process. Thus, these unique properties are very promising, particularly for the detection of various types of chemicals, for example boric acid which is a non-permitted preservative employed in food preparations. For the sensing material, gold (Au) nanoplates with a variety of shapes, i.e., triangular, hexagonal, truncated pentagon and flat rod, were prepared using a seed-mediated growth method. The yield of Au nanoplates was estimated to be ca. 63% over all areas of the sensing material. The nanoplates produced two absorption bands, i.e., the transverse surface plasmon resonance (t-SPR) and the longitudinal surface plasmon resonance (l-SPR) at 545 nm and 710 nm, respectively. In the sensing study, these two bands were used to examine the response of gold nanoplates to the presence of boric acid in an aqueous environment. In a typical process, when the sample is immersed into an aqueous solution containing boric acid, these two bands may change their intensity and peak centers as a result of the interaction between the boric acid and the gold nanoplates. The changes in the intensities and peak positions of t-SPR and l-SPR linearly correlated with the change in the boric acid concentration in the solution.
  2. Nafisah S, Morsin M, Jumadi NA, Nayan N, Md Shah NZA, Razali NL, et al.
    MethodsX, 2018;5:1618-1625.
    PMID: 30568883 DOI: 10.1016/j.mex.2018.12.002
    A one-step wet chemical approach or seedless growth process has several advantages compared to the traditional seed-mediated growth method (SMGM), such as being simpler and not requiring a multistep growth of seeds. This study had introduced a one-step wet chemical method to synthesis gold nanoplates on a solid substrate. The synthesis was carried out by simply immersing clean ITO substrate into a solution, which was made from mixing of gold chloride (precursor), cetyltrimethylammonium bromide or CTAB (stabilizing agent), and poly-l-lysine or PLL (reducing agent). Consequently, the size of the nanoplates in the range of (0.40 - 0.89) μm and a surface density within the range (21.89-57.19) % can be easily controlled by changing the concentration of PLL from 0.050 to 0.100 w/v % in H2O. At low PLL concentrations, the reduction of the gold precursor by PLL is limited, leading to the formation of gold nanoplates with a smaller size and surface density. The study on the sample by using energy-dispersive x-ray spectroscopy (EDS) confirmed that gold peaks occurred. The optical properties of the samples were examined by a UV-vis Spectrophotometer and showed that there was no strong surface plasmon resonance band observed at UV-vis and infrared regions, which agreed to micron-sized gold nanoplates. •Gold nanoplates synthesized on the substrate using a simple one-step wet chemical synthesis approach with poly-l-lysine (PLL) as a reducing agent and CTAB as a stabilizing agent.•The nanoplate's size and surface density was strongly dependent on the concentration of PLL.•Gold nanoplates synthesized using PLL with a concentration 0.050% showed perfect triangular shape, less by-products and more homogenous in size.
  3. Lim GP, Soon CF, Ma NL, Morsin M, Nayan N, Ahmad MK, et al.
    Environ Res, 2021 10;201:111592.
    PMID: 34175291 DOI: 10.1016/j.envres.2021.111592
    MXene based nanomaterial is an uprising two-dimensional material gaining tremendous scientific attentions due to its versatile properties for the applications in electronic devices, power generation, sensors, drug delivery, and biomedicine. However, the cytotoxic effects of MXene still remained a huge concern. Therefore, stringent analysis of biocompatibility of MXene is an essential requirement before introduction to human physiological system. Several in vitro and in vivo toxicological studies have been reported to investigate the interactions between MXenes with living organisms such as microbes, mammalian cells and animal models. The biological response and cytotoxicity reported were dependent on the physicochemical properties of MXene. The biocompatibility and cytotoxicity of MXene were dependent on size, dose, and surface coating. This review demystifies the in vitro and in vivo biocompatibility studies associated with MXene. Various methods proposed to mitigate the cytotoxicity of MXene for in vivo applications were revealed. The machine learning methods were developed to predict the cytotoxicity of experimentally synthesized MXene compounds. Finally, we also discussed the current research gaps of applying MXenes in biomedical interventions.
  4. Morsin M, Nafisah S, Sanudin R, Razali NL, Mahmud F, Soon CF
    PLoS One, 2021;16(11):e0259730.
    PMID: 34748606 DOI: 10.1371/journal.pone.0259730
    An anisotropic structure, gold (Au) nanoplates was synthesized using a two-step wet chemical seed mediated growth method (SMGM) directly on the substrate surface. Prior to the synthesis process, poly-l-lysine (PLL) as a cation polymer was used to enhance the yield of grown Au nanoplates. The electrostatic interaction of positive charged by PLL with negative charges from citrate-capped gold nanoseeds contributes to the yield increment. The percentage of PLL was varied from 0% to 10% to study the morphology of Au nanoplates in term of shape, size and surface density. 5% PLL with single layer treatment produce a variety of plate shapes such as hexagonal, flat rod and triangular obtained over the whole substrate surface with the estimated maximum yield up to ca. 48%. The high yield of Au nanoplates exhibit dual plasmonic peaks response that are associated with transverse and longitudinal localized surface plasmon resonance (TSPR and LSPR). Then, the PLL treatment process was repeated twice resulting the increment of Au nanoplates products to ca. 60%. The thin film Au nanoplates was further used as sensing materials in plasmonic sensor for detection of boric acid. The anisotropic Au nanoplates have four sensing parameters being monitored when the medium changes, which are peak position (wavelength shift), intensity of TSPR and LSPR, and the changes on sensing responses. The sensor responses are based on the interaction of light with dielectric properties from surrounding medium. The resonance effect produces by a collection of electron vibration on the Au nanoparticles surface after hit by light are captured as the responses. As a conclusion, it was found that the PLL treatment is capable to promote high yield of Au nanoplates. Moreover, the high yield of the Au nanoplates is an indication as excellent candidate for sensing material in plasmonic sensor.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links