Displaying all 3 publications

Abstract:
Sort:
  1. Mukhtar NH, See HH
    Anal Chim Acta, 2016 08 10;931:57-63.
    PMID: 27282751 DOI: 10.1016/j.aca.2016.04.032
    In this study, the potential for carbonaceous nanomaterials to be used as adsorbents for the mixed matrix membrane (MMM) microextraction and preconcentration of organic pollutants was demonstrated. For this method, multiwall carbon nanotubes (MWCNT) and single layer graphene (SLG) nanoparticles were individually incorporated through dispersion in a cellulose triacetate (CTA) polymer matrix to form a MWCNT-MMM and SLG-MMM, respectively. The prepared membranes were evaluated for the extraction of selected polycyclic aromatic hydrocarbons (PAHs) present in sewage pond water samples. The extraction was performed by dipping a small piece of membrane (7 mm × 7 mm) in a stirred 7.5 mL sample solution to initiate the analyte adsorption. This step was followed by an analyte desorption into 60 μL of methanol prior to high performance liquid chromatography (HPLC) analysis. When the optimum SLG-MMM microextraction technique was applied to spiked sewage pond water samples, the detection limit of the method for the PAHs were in the range of 0.02-0.09 ng/mL, with relative standard deviations of between 1.4% and 7.8%. Enrichment factors of 54-100 were achieved with relative recoveries of 99%-101%. A comparison was also made between the proposed approach and standard solid phase extraction using polymeric bonded octadecyl (C18) cartridges.
  2. Mukhtar NH, Mamat NA, See HH
    J Pharm Biomed Anal, 2018 Sep 05;158:184-188.
    PMID: 29883881 DOI: 10.1016/j.jpba.2018.05.044
    A sample pre-treatment method based on a dynamic mixed matrix membrane tip extraction followed by capillary electrophoresis with contactless conductivity detection (CE-C4D) was evaluated for the determination of tobramycin in human plasma. The extraction tip device consisted of a cellulose triacetate membrane tip wall immobilised with 15% (w/w) of hydrophilic lipophilic balance (HLB) nanoparticles as adsorbent. The extraction was performed dynamically by withdrawing/dispensing the plasma sample through the tip device followed by desorption into 20 μL of acidified aqueous solution at pH 3 prior to the CE-C4D analysis. Under the optimum conditions, the detection limit of the method for tobramycin was 10 ng/mL, with intraday and interday repeatability RSDs of 3.5% and 4.5%, respectively. Relative recoveries in spiked human plasma were 99.6%-99.9%. The developed approach was successfully demonstrated for the quantification of tobramycin in human plasma samples.
  3. Azfaralariff A, Mat Lazim A, Amran NH, Mukhtar NH, Bakri ND, Azrihan NN, et al.
    Waste Manag Res, 2023 Jul;41(7):1219-1226.
    PMID: 36883418 DOI: 10.1177/0734242X231155395
    In recent years, the environmental pollution of microplastics (MPs) has increasingly drawn our attention. MPs are small fragments of plastics that are commonly dispersed in the environment. The accumulation of environmental MPs is due to population growth and urbanization, while natural disasters such as hurricanes, flooding and human activity may influence their distribution. The leaching of chemicals from MPs raises a significant safety problem and environmental approaches aimed at reducing the use and recycling of plastics, with the replacement by bioplastics and wastewater treatment developments are called for. This summary also helps in demonstrating the connection between terrestrial and freshwater MPs and wastewater treatment plants as the major contributors to environmental MPs by discharges of sludge and effluent. More research on the classification, detection, characterization and toxicity of MPs are essential to enable greater options and solutions. Control initiatives need to intensify the comprehensive study of MP waste control and management information programmes in the fields of institutional engagement, technological research and development, legislation and regulation. A comprehensive quantitative analysis approach for MPs should be created in the future, and more reliable traceability analysis methods should be built to examine further its environmental activity and existence, where this should be done to improve scientific research on MP pollution in terrestrial, freshwater and marine environments and hence, develop more scientific and rational control policies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links