Displaying all 3 publications

Abstract:
Sort:
  1. Musaed AA, Al-Bawri SS, Abdulkawi WM, Aljaloud K, Yusoff Z, Islam MT
    Sci Rep, 2024 Jan 02;14(1):290.
    PMID: 38168653 DOI: 10.1038/s41598-023-50544-z
    A 16-port massive Multiple-Input-Multiple-Output (mMIMO) antenna system featuring a high gain and efficiency is proposed for millimeter-wave applications. The antenna system consists of 64 elements with a total size of 17 λo × 2.5λo, concerning the lowest frequency. Each 2 × 2 (radiating patch) subarray is designed to operate within the 25.5-29 GHz frequency range. The antenna's performance in terms of isolation, gain, and efficiency has been significantly improved by utilizing the proposed unique double and epsilon negative (DNG/ENG) metamaterials. The array elements are positioned on top of a Rogers RT5880 substrate, with ENG metamaterial unit cells interposed in between to mitigate coupling effects. Additionally, the DNG metamaterial reflector is positioned at the rear of the antenna to boost the gain. As a result, the metamaterial-based mMIMO antenna offers lower measured isolation reaching 25 dB, a maximum gain of 20 dBi and an efficiency of up to 99%. To further analyze the performance of the MIMO antenna, the diversity gain and enveloped correlation coefficient are discussed in relation to the MIMO parameters.
  2. Musaed AA, Al-Bawri SS, Islam MT, Al-Gburi AJA, Singh MJ
    Materials (Basel), 2022 Aug 16;15(16).
    PMID: 36013745 DOI: 10.3390/ma15165608
    This paper introduces the tunability performance, concept, and analysis of a unique and miniaturized metamaterial (MTM) unit cell covering the upcoming 6G applications. The proposed metamaterial consists of two metallic star-shaped split-ring resonators (SRR). It has a line segment placed in the middle of the structure, which can feature tunable characteristics. The proposed design provides dual resonances of transmission coefficient S21 at 0.248 and 0.383 THz with a significant operating frequency span of 0.207-0.277 and 0.382-0.390 THz, respectively. Moreover, wide-range achievement, negative permittivity, double-negative (DNG) refractive index, and near-zero permeability characteristics have been exhibited in two (z and y) principal wave propagation axes. The resonance frequencies are selective and modified by adjusting the central slotted-strip line length. Furthermore, the metamaterial is constituted on a polyimide substrate while the overall dimensions are 160 × 160 μm2. A numerical simulation of the proposed design is executed in CST microwave studio and has been compared with advanced design software (ADS) to generate the proposed MTM's equivalent circuit, which exhibits a similar transmission coefficient (S21).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links