Honey is a sustainable nutritious substance which has been incorporated into the human diet since ancient times for its health and remedial benefits. Stingless bee honey or kelulut honey (KH) is well-known in Malaysia and has received high demand in the market due to its distinctive unique flavour. Its composition, colour, and flavour are majorly affected by the geographical location, floral source, climate, as well as the bee species. This data article presents the nontargeted metabolite profiling of the extracts of KH of Heterotrigona itama and Tetrigona binghami bee species. The KH was collected from three nests in Kuantan, Pahang, which is situated in the east coast of Peninsular Malaysia. The extracts were prepared using sugaring-out assisted liquid-liquid extraction (SULLE) method and the Liquid Chromatography-Tandem Mass Spectrometry with Quadrupole Time-of-Flight, operated in the negative ion mode, was used to identify compounds in the extracts. The data processing revealed the presence of 35 known compounds in the KH1 extract by Heterotrigona itama collected from Bukit Kuin, 38 compounds in the KH2 extract by H. itama collected from Indera Mahkota, whilst 50 known compounds were present in KH3 extract by Tetrigona binghami species from Indera Mahkota. This data article contains the m/z values, retention times, and the METLIN database search hit identities of the compounds and their respective classes.
The human angiotensin-converting enzyme 2 (ACE-2) receptor is a metalloenzyme that plays an important role in regulating blood pressure by modulating angiotensin II. This receptor facilitates SARS-CoV-2 entry into human cells via receptor-mediated endocytosis, causing the global COVID-19 pandemic and a major health crisis. Kelulut honey (KH), one of Malaysian honey recently gained attention for its distinct flavour and taste while having many nutritional and medicinal properties. Recent study demonstrates the antiviral potential of KH against SARS-CoV-2 by inhibiting ACE-2 in vitro, but the bioactive compound pertaining to the ACE-2 inhibition is yet unknown. An ensemble docking-based virtual screening was employed to screen the phytochemical compounds from KH with high binding affinity against the 10 best representative structures of ACE-2 that mostly formed from MD simulation. From 110 phytochemicals previously identified in KH, 27 compounds passed the ADMET analysis and proceeded to docking. Among the docked compound, SDC and FMN consistently exhibited strong binding to ACE-2's active site (-9.719 and -9.473 kcal/mol) and allosteric site (-7.305 and -7.464 kcal/mol) as compared to potent ACE-2 inhibitor, MLN 4760. Detailed trajectory analysis of MD simulation showed stable binding interaction towards active and allosteric sites of ACE-2. KH's compounds show promise in inhibiting SARS-CoV-2 binding to ACE-2 receptors, indicating potential for preventive use or as a supplement to other COVID-19 treatments. Additional research is needed to confirm KH's antiviral effects and its role in SARS-CoV-2 therapy, including prophylaxis and adjuvant treatment with vaccination.Communicated by Ramaswamy H. Sarma.