Regenerative medicine represents a paradigm shift in healthcare, aiming to restore tissue and organ function through innovative therapeutic strategies. Among these, bioprinting and extracellular vesicles (EVs) have emerged as promising techniques for tissue rejuvenation. EVs are small lipid membrane particles secreted by cells, known for their role as potent mediators of intercellular communication through the exchange of proteins, genetic material, and other biological components. The integration of 3D bioprinting technology with EVs offers a novel approach to tissue engineering, enabling the precise deposition of EV-loaded bioinks to construct complex three-dimensional (3D) tissue architectures. Unlike traditional cell-based approaches, bioprinted EVs eliminate the need for live cells, thereby mitigating regulatory and financial obstacles associated with cell therapy. By leveraging the synergistic effects of EVs and bioprinting, researchers aim to enhance the therapeutic outcomes of skin regeneration while addressing current limitations in conventional treatments. This review explores the evolving landscape of bioprinted EVs as a transformative approach for skin regeneration. Furthermore, it discusses the challenges and future directions in harnessing this innovative therapy for clinical applications, emphasizing the need for interdisciplinary collaboration and continued scientific inquiry to unlock its full therapeutic potential.
Polycyclic Aromatic Hydrocarbons (PAHs) profoundly impact public and environmental health. Gaining a comprehensive understanding of their intricate functions, exposure pathways, and potential health implications is imperative to implement remedial strategies and legislation effectively. This review seeks to explore PAH mobility, direct exposure pathways, and cutting-edge bioremediation technologies essential for combating the pervasive contamination of environments by PAHs, thereby expanding our foundational knowledge. PAHs, characterised by their toxicity and possession of two or more aromatic rings, exhibit diverse configurations. Their lipophilicity and remarkable persistence contribute to their widespread prevalence as hazardous environmental contaminants and byproducts. Primary sources of PAHs include contaminated food, water, and soil, which enter the human body through inhalation, ingestion, and dermal exposure. While short-term consequences encompass eye irritation, nausea, and vomiting, long-term exposure poses risks of kidney and liver damage, difficulty breathing, and asthma-like symptoms. Notably, cities with elevated PAH levels may witness exacerbation of bronchial asthma and chronic obstructive pulmonary disease (COPD). Bioremediation techniques utilising microorganisms emerge as a promising avenue to mitigate PAH-related health risks by facilitating the breakdown of these compounds in polluted environments. Furthermore, this review delves into the global concern of antimicrobial resistance associated with PAHs, highlighting its implications. The environmental effects and applications of genetically altered microbes in addressing this challenge warrant further exploration, emphasising the dynamic nature of ongoing research in this field.
This study used Morinda citrifolia leaf (MCL) extract to synthesise Zinc oxide nanoparticles (ZnO NPs) and ZnO decorated silver nanocomposites (ZnO/Ag NCs). The synthesized nanomaterials structural morphology and crystallinity were characterized using a Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) analysis. The antimicrobial activity of ZnO NPs and ZnO/Ag NCs was evaluated using human nosocomial bacterial pathogens. The highest antimicrobial activity was recorded for ZnO/Ag NCs at the minimum inhibitory concentration (MIC) at 80 and 100 μg/mL for Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, Staphylococcus aureus than ZnO NPs at the MIC of 120 and 140 μg/mL for Bacillus subtilis and Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. Furthermore, ROS detection, viability assay and bacterial membrane integrity analysis of ZnO/Ag NCs treated P. aeruginosa and S. aureus revealed the fundamental bactericidal mechanism involving cell wall, cell membrane interaction and release of cytoplasmic contents. In addition, ZnO/Ag NCs and ZnO NPs showed higher toxicity towards A549 lung cancer cells than the non-cancerous RAW264 macrophage cells, with IC50 of 242 and 398 µg/mL respectively, compared to IC50 of 402 and 494 µg/mL for the macrophage cells. These results suggest that the ZnO/Ag NCs can be effectively used to develop antimicrobial and anticancer materials.