Displaying all 3 publications

Abstract:
Sort:
  1. Pervez MN, Yeo WS, Lin L, Xiong X, Naddeo V, Cai Y
    Sci Rep, 2023 Jul 31;13(1):12363.
    PMID: 37524835 DOI: 10.1038/s41598-023-39528-1
    The typical textile dyeing process calls for a wide range of operational parameters, and it has always been difficult to pinpoint which of these qualities is the most important in dyeing performance. Consequently, this research used a combined design of experiments and machine learning prediction models' method to offer a sustainable and beneficial reactive cotton fabric dyeing process. To be more precise, we built a least square support vector regression (LSSVR) model based on Taguchi's statistical orthogonal design (L27) to predict exhaustion percentage (E%), fixation rate (F%), and total fixation efficiency (T%) and color strength (K/S) in the reactive cotton dyeing process. The model's prediction accuracy was assessed using many measures, including root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2). Principal component regression (PCR), partial least square regression (PLSR), and fuzzy modelling were some of the other types of regression models used to compare results. Our findings reveal that the LSSVR model greatly outperformed competing models in predicting the E%, F%, T%, and K/S. This is shown by the LSSVR model's much smaller RMSE and MAE values. Overall, it provided the highest possible R2 values, which reached 0.9819.
  2. Pervez MN, Yeo WS, Shafiq F, Jilani MM, Sarwar Z, Riza M, et al.
    Heliyon, 2023 Jan;9(1):e12883.
    PMID: 36691543 DOI: 10.1016/j.heliyon.2023.e12883
    Given the carcinogenic properties of formaldehyde-based chemicals, an alternative method for resin-finishing cotton textiles is urgently needed. Therefore, the primary objective of this study is to introduce a sustainable resin-finishing process for cotton fabric via an industrial procedure. For this purpose, Bluesign® approved a formaldehyde-free Knittex RCT® resin was used, and the process parameters were designed and optimized according to the Taguchi L27 method. XRD analysis confirmed the crosslinking formation between resin and neighboring molecules of cotton fabric, as no change in the cellulose crystallization phase. Several machine learning models were built in a sequence to predict the crease recovery angle (CRA), tearing strength (TE) and whiteness index (WI). Assessment of modelling was evaluated through the use of various metrics such as root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2). Results were compared to those from other regression models, such as principal component regression (PCR), partial least squares regression (PLSR), and fuzzy modelling. Based on the results of our research, the LSSVR model predicted the CRA, TE, and WI with substantially more accuracy than other models, as shown by the fact that its RMSE and MAE values were significantly lower. In addition, it offered the greatest possible R2 values, reaching up to 0.9627.
  3. Pervez MN, Yeo WS, Mishu MMR, Talukder ME, Roy H, Islam MS, et al.
    Sci Rep, 2023 Jun 15;13(1):9679.
    PMID: 37322139 DOI: 10.1038/s41598-023-36431-7
    Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links