Displaying all 3 publications

Abstract:
Sort:
  1. Bashir S, Teo YY, Naeem S, Ramesh S, Ramesh K
    PLoS One, 2017;12(7):e0179250.
    PMID: 28678803 DOI: 10.1371/journal.pone.0179250
    There has been significant progress in the last few decades in addressing the biomedical applications of polymer hydrogels. Particularly, stimuli responsive hydrogels have been inspected as elegant drug delivery systems capable to deliver at the appropriate site of action within the specific time. The present work describes the synthesis of pH responsive semi-interpenetrating network (semi-IPN) hydrogels of N-succinyl-chitosan (NSC) via Schiff base mechanism using glutaraldehyde as a crosslinking agent and Poly (acrylamide-co-acrylic acid)(Poly (AAm-co-AA)) was embedded within the N-succinyl chitosan network. The physico-chemical interactions were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscope (FESEM). The synthesized hydrogels constitute porous structure. The swelling ability was analyzed in physiological mediums of pH 7.4 and pH 1.2 at 37°C. Swelling properties of formulations with various amounts of NSC/ Poly (AAm-co-AA) and crosslinking agent at pH 7.4 and pH 1.2 were investigated. Hydrogels showed higher swelling ratios at pH 7.4 while lower at pH 1.2. Swelling kinetics and diffusion parameters were also determined. Drug loading, encapsulation efficiency, and in vitro release of 5-fluorouracil (5-FU) from the synthesized hydrogels were observed. In vitro release profile revealed the significant influence of pH, amount of NSC, Poly (AAm-co-AA), and crosslinking agent on the release of 5-FU. Accordingly, rapid and large release of drug was observed at pH 7.4 than at pH 1.2. The maximum encapsulation efficiency and release of 5-FU from SP2 were found to be 72.45% and 85.99%, respectively. Kinetics of drug release suggested controlled release mechanism of 5-FU is according to trend of non-Fickian. From the above results, it can be concluded that the synthesized hydrogels have capability to adapt their potential exploitation as targeted oral drug delivery carriers.
  2. Gagui S, Meradji H, Ghemid S, Naeem S, Haq BU, Ahmed R, et al.
    J Mol Model, 2022 Dec 21;29(1):14.
    PMID: 36542150 DOI: 10.1007/s00894-022-05412-4
    Understanding the physical properties of a material is crucial to know its applicability for practical applications. In this study, we investigate the phase stability, elastic, electronic, thermal, and optical properties of the ternary alloying of the scandium and yttrium nitrides (Sc1-xYxN) for different compositions. To do so, we apply a "density functional theory (DFT)" based scheme of calculations named as "full potential (FP) linearized (L) augmented plane wave plus local orbitals (APW + lo) method" realized in the WIEN2k computational package. At first, the phase stability of the investigated compositions of the mentioned alloy is determined. The analysis of our calculations shows that Sc1-xYxN alloy is stable in rock salt crystal structure for all investigated compositions. Next to that, the elastic properties of the rock-salt phase of the studied ternary alloy Sc1-xYxN at all above said compositions were done at the level of "Wu-Cohen generalized gradient approximation (Wu-GGA)" within DFT. However, Trans-Blaha (TB) approximation of the "modified Becke-Johson (mBJ)" potential is also used in combination with Wu-GGA where the thermal properties are calculated at the level of the "quasi-harmonic Debye model." The obtained results for the absorption coefficients, and optical bandgap, represent that the title alloy may be a suitable candidate for the applications in optoelectronic devices.
  3. Anis S, Masood Khan M, Ali Z, Khan A, Arsalan HM, Naeem S, et al.
    Pak J Pharm Sci, 2021 Sep;34(5):1821-1836.
    PMID: 34803021
    The COVID-19 epidemic is considered the most important health disaster of the century and the largest humanitarian crisis since World War II. In December 2019, a new respiratory disease/disorder was discovered in Wuhan, Hubei province, China and World Health Organization named it COVID-19 (coronavirus 2019). It has been diagnosed with a new class of corona virus, called SARS-CoV-2 (a serious respiratory disease). According to the history of human civilization it is affected by the incidence of disease outbreaks caused by the number of viruses. Covid-19 is rapidly spreading across the globe, due to which mankind faces major health, economic, environmental and social challenges. The outbreak of coronavirus is seriously affecting the global economy. Almost all nations have problems limiting the spread of the disease by screening and treating patients, setting up suspects by keeping in touch, blocking large gatherings, maintaining full or partial closure etc. This paper describes the impact of COVID-19 on society and the global environment, and the ways in which the disease is likely to be controlled have been discussed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links