Displaying all 4 publications

Abstract:
Sort:
  1. Haj Najafi, A., Yusof, Y. A., Rahman, R. A., Ganjloo, A., Ling, C. N.
    MyJurnal
    In the current research, osmotic dehydration of red pitaya (Hylocereus polyrhizusis) cubes using sucrose solution at mild temperature (35ºC) was investigated. Sucrose solution (40, 50 and 60% w/w) was employed for osmotic dehydration process. Responses of weight reduction (WR), solid gain (SG), water loss (WL), color (L*, a* and b*) and texture (hardness) were evaluated. It was found that sucrose concentration significantly (p < 0.05) affected the mass transfer terms during osmosis process. The results obtained revealed an increase in yellowness (b*), decrease in lightness (L*) and redness (a*) as the sucrose concentration increased. Furthermore, osmotically dehydrated samples were considerably softer than untreated samples. Increasing of sucrose concentration and dehydration time caused softer tissue of dehydrated product compared with the fresh red pitaya.
  2. Jafarzadeh, S., Alias, A.K., Ariffin, F., Mahmud, S., Najafi, A, Sheibani, S.
    MyJurnal
    Biodegradable packaging, such as edible coatings and films, is widely used because it is free
    from synthetic substances and does not lead to environment pollution. Therefore, this industry
    is continuously growing. This study aimed to prepare and characterize biodegradable films
    loaded with nano kaolin. Semolina protein films were prepared and plasticized with sorbitol/
    glycerol by the casting method. Nano kaolin with 0%, 1%, 2%, 3%, 4% and 5% (w/w) was
    added to the films before casting them. The films were dried at controlled conditions. The effects
    of the addition of nanoparticles were measured on water absorption capacity (WAC), density,
    ultraviolet transmittance, heat sealability, and film morphology. Results showed that the WAC
    and density of the films decreased by increasing the nano kaolin concentration. By contrast, the
    seal strength for the semolina film was increased by incorporating a low percentage of nano
    kaolin. The X-ray diffraction curves of the semolina film incorporated with kaolin exhibited
    broad reflection, thus indicating that the kaolin nanosize matches the transmission electron
    microscopy images. In summary, nano kaolin incorporation enhanced the physicochemical
    properties and heat sealability of semolina films, thereby indicating the potential application of
    these bionanocomposites to food-product packaging.
  3. Jafarzadeh S, Alias AK, Ariffin F, Mahmud S, Najafi A
    J Food Sci Technol, 2016 Feb;53(2):1111-9.
    PMID: 27162391 DOI: 10.1007/s13197-015-2017-7
    Effects of nano-kaolin incorporation into semolina films on the physical, mechanical, thermal, barrier and antimicrobial properties of the resulting bio-nanocomposite films were investigated. The properties included crystal structure (by X-ray diffraction), mechanical resistance, color, Fourier transform infrared spectra, decomposition temperature, water-vapor permeability (WVP), oxygen permeability (OP), and antimicrobial activity against Staphylococcus aureus and Escherichia coli. Kaolin was incorporated into biofilms at various amounts (1, 2, 3, 4, and 5 %, w/w total solid). All films were plasticized with 50 % (w/w total solid) combination of sorbitol/glycerol at 3:1 ratio. The incorporation of nanokaolin into semolina films decreased OP and WVP. The moisture content and water solubility of the films were found to decrease by nanokaolin reinforcement, and mechanical properties of films were improved by increasing nanokaolin concentration. Tensile strength and Young's modulus increased from 3.41 to 5.44 MPa and from 63.12 to 136.18, respectively, and elongation-at-break decreased. The films did not exhibit UV absorption. In conclusion, nanokaolin incorporation enhanced the barrier and mechanical properties of semolina films, indicating the potential application of these bio-nanocomposites in food-product packaging.
  4. Jafarzadeh S, Alias AK, Ariffin F, Mahmud S, Najafi A, Ahmad M
    J Food Sci Technol, 2017 Jan;54(1):105-113.
    PMID: 28242909 DOI: 10.1007/s13197-016-2441-3
    This study aimed to provide novel biopolymer-based antimicrobial films as food packaging that may assist in reducing environmental pollution caused by the accumulation of synthetic food packaging. The blend of ZnO nanorods (ZnO-nr) and nanokaolin in different ratios (1:4, 2:3, 3:2 and 4:1) was incorporated into semolina, and nanocomposite films were prepared using solvent casting. The resulting films were characterized through field-emission scanning electron microscopy and X-ray diffraction. The mechanical, optical, physical, and antimicrobial properties of the films were also analyzed. The water vapor permeability of the films decreased with increasing ZnO-nr percentage, but their tensile strength and modulus of elasticity increased with increasing nanokaolin percentage. The UV transmittance of the semolina films were greatly influenced by an increase in the amount of ZnO-nr. The addition of ZnO-nr: nanokaolin at all ratios (except 1:4) into semolina reduced UV transmission to almost 0%. Furthermore, the ZnO-nr/nanokaolin/semolina films exhibited a strong antimicrobial activity against Staphylococcus aureus. These properties suggest that the combination of ZnO-nr and nanokaolin are potential fillers in semolina-based films to be used as active packaging for food and pharmaceuticals.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links