Displaying all 8 publications

Abstract:
Sort:
  1. Koyama M, Nagao N, Syukri F, Yusoff FM, Toda T, Quyen TNM, et al.
    Sci Total Environ, 2019 Jun 20;670:1133-1139.
    PMID: 31018429 DOI: 10.1016/j.scitotenv.2019.03.320
    The primary biological treatment method for organic sludge is composting and/or anaerobic digestion, but their product (compost or biogas) is of little economic benefit; therefore, an improved process to produce a high-value product is required to make sludge management more sustainable. Maximizing NH3 gas recovery during composting processes has the potential benefit of producing high-value microalgal biomass. However, the majority of produced ammonia does not evaporate as NH3 gas but retains as NH4+-N in the compost after fermentation. The present study investigates the effects of the timing of Ca(OH)2 dosing (on days 2, 5, and 9), and the Ca(OH)2 dose (1.1-2.6 mmol/batch), on lab-scale thermophilic composting of anaerobic sludge. The effects on NH3 recovery, organic matter degradability, and microbial activity are evaluated. Ca(OH)2 dosing immediately improved the emission of NH3, with yields 50-69% higher than those under control conditions. The timing of the dosing did not influence NH3 recovery or organic matter degradability. Higher Ca(OH)2 doses resulted in higher NH3 recovery, while microbial activity was temporarily and marginally inhibited. The pH of the compost reached 10-11.5 but quickly dropped to 8-8.5 within a day, probably because of neutralization of Ca(OH)2 by the emitted CO2 and release of NH3, which maintained the microbial activity. The present study indicated that Ca(OH)2 dosing would be useful to apply during thermophilic composting for NH3 recovery to cultivate high-value microalgal biomass, which enables this process to obtain a more economic benefit.
  2. Koyama M, Kakiuchi A, Syukri F, Toda T, Tran QNM, Nakasaki K
    Sci Total Environ, 2021 Aug 26;802:149961.
    PMID: 34525702 DOI: 10.1016/j.scitotenv.2021.149961
    Recent attempts have been made to develop a thermophilic composting process for organic sludge to not only produce organic fertilizers and soil conditioners, but to also utilize the generated ammonia gas to produce high value-added algae. The hydrolysis of organic nitrogen in sludge is a bottleneck in ammonia conversion, and its improvement is a major challenge. The present study aimed to elucidate the effects of inoculated Neurospora sp. on organic matter decomposition and ammonia conversion during thermophilic composting of two organic sludge types: anaerobic digestion sludge and shrimp pond sludge. A laboratory-scale sludge composting experiment was conducted with a 6-day pretreatment period at 30 °C with Neurospora sp., followed by a 10-day thermophilic composting period at 50 °C by inoculating the bacterial community. The final organic matter decomposition was significantly higher in the sludge pretreated with Neurospora sp. than in the untreated sludge. Correspondingly, the amount of non-dissolved nitrogen was also markedly reduced by pretreatment, and the ammonia conversion rate was notably improved. Five enzymes exhibiting high activity only during the pretreatment period were identified, while no or low activity was observed during the subsequent thermophilic composting period, suggesting the involvement of these enzymes in the degradation of hardly degradable fractions, such as bacterial cells. The bacterial community analysis and its function prediction suggested the contribution of Bacillaceae in the degradation of easily degradable organic matter, but the entire bacterial community was highly incapable in degrading the hardly degradable fraction. To conclude, this study is the first to demonstrate that Neurospora sp. decomposes those organic nitrogen fractions that require a long time to be decomposed by the bacterial community during thermophilic composting.
  3. Koyama M, Nagao N, Syukri F, Rahim AA, Kamarudin MS, Toda T, et al.
    Bioresour Technol, 2018 Oct;265:207-213.
    PMID: 29902653 DOI: 10.1016/j.biortech.2018.05.109
    Development of thermophilic composting for maximizing NH3 gas recovery would enable the production of a nitrogen source which is free from pathogen/heavy metal, for the cultivation of high-value microalgae. The present study examined the effect of NH3 recovery, nitrogen mass balance, and microbial community dynamics on thermophilic composting of shrimp aquaculture sludge. The emission of NH3 gas at 60 and 70 °C was 14.7% and 15.6%, respectively, which was higher than that at 50 °C (9.0%). The nitrogen mass balance analysis revealed that higher temperatures enhanced the solubilization of non-dissolved nitrogen and liberation of NH3 gas from the produced NH4+-N. High-throughput microbial community analysis revealed the shift of the dominant bacterial group from Bacillus to Geobacillus with the rise of composting temperature. In conclusion, thermophilic composting of shrimp aquaculture sludge at 60-70 °C was the most favorable condition for enhancing NH3 gas recovery.
  4. Zainul Kamal S, Koyama M, Syukri F, Toda T, Tran QNM, Nakasaki K
    Environ Res, 2021 Oct 29.
    PMID: 34743806 DOI: 10.1016/j.envres.2021.112299
    In recent years, attempts have been made to develop a thermophilic composting process for organic sludge to produce ammonia gas for high value-added algal production. However, the hydrolysis of non-dissolved organic nitrogen in sludge is a bottleneck for ammonia conversion. The aim of this study was to identify enzymes that enhance sludge hydrolysis in a thermophilic composting system for ammonia recovery from shrimp pond sludge. This was achieved by screening useful enzymes to degrade non-dissolved nitrogen and subsequently investigating their effectiveness in lab-scale composting systems. Among the four hydrolytic enzyme classes assessed (lysozyme, protease, phospholipase, and collagenase), proteases from Streptomyces griseus were the most effective at hydrolysing non-dissolved nitrogen in the sludge. After composting sludge pre-treated with proteases, the final amount of non-dissolved nitrogen was 46.2% of the total N in the control sample and 22.3% of the total N in the protease sample, thus increasing the ammonia (gaseous and in-compost) conversion efficiency from 41.5% to 56.4% of the total N. The decrease in non-dissolved nitrogen was greater in the protease sample than in the control sample during the pre-treatment period, and no difference was observed during the subsequent composting period. These results suggest that Streptomyces proteases hydrolyse the organic nitrogen fraction, which cannot be degraded by the bacterial community in the compost. Functional potential analysis of the bacterial community using PICRUSt2 suggested that 4 (EC:3.4.21.80, EC:3.4.21.81, EC:3.4.21.82, and EC:3.4.24.77) out of 13 endopeptidase genes in S. griseus were largely absent in the compost bacterial community and that they play a key role in the hydrolysis of non-dissolved nitrogen. This is the first study to identify the enzymes that enhance the hydrolysis of shrimp pond sludge and to show that the thermophilic bacterial community involved in composting has a low ability to secrete these enzymes.
  5. Zainul Kamal S, Ngoc Minh Tran Q, Koyama M, Mimoto H, Asada C, Nakamura Y, et al.
    J Biosci Bioeng, 2022 Jan 31.
    PMID: 35115228 DOI: 10.1016/j.jbiosc.2022.01.004
    Hydrothermal treatment (HTT) as a pretreatment method for compost raw material has multiple benefits such as enhanced solubility of organic material, improved bioaugmentation, and reduced biohazard by killing harmful microorganisms. In this study, we pretreated food waste via HTT at 180 °C for 30 min to investigate its effect on food waste composting. HTT generated 8.98 mg/g-dry solid (g-ds) of 5-hydroxymethylfurfural and 4.32 mg/g-ds furfural. These furan compounds were completely decomposed in the early stage of composting, subsequently the organic matter in the food waste started to be degraded. The HTT-pretreated experiment demonstrated less organic matter degradation during composting as well as lower compost phytotoxicity compared to the non-HTT-pretreated experiment, where the conversion of carbon was 25.2% and the germination index value was 55%. HTT probably denatured part of the organic matter and making it more difficult to decompose, thereby preventing the rapid release of high concentrations of phytotoxic compounds such as organic acids and ammonium ions during composting. High-throughput microbial community analysis revealed that only Firmicutes appeared in the HTT-pretreated experiment, however, other bacterial groups also appeared in the non-HTT-pretreated experiment. This was possibly influenced by furan compounds and the changes of easily degradable organic matter to hardly degradable. Bacillus and Lysinibacillus were dominant in both composting experiments during vigorous organic matter degradation, suggesting that these bacterial groups were the main contributors to food waste composting. This study suggests that HTT is advantageous for the pretreatment of easily degradable food waste, as compost with less phytotoxicity was produced.
  6. Farahin AW, Natrah I, Nagao N, Yusoff FM, Shariff M, Banerjee S, et al.
    Front Bioeng Biotechnol, 2021;9:568776.
    PMID: 33585428 DOI: 10.3389/fbioe.2021.568776
    Microalgae can use either ammonium or nitrate for its growth and vitality. However, at a certain level of concentration, ammonium nitrogen exhibits toxicity which consequently can inhibit microalgae productivity. Therefore, this study is aimed to investigate the tolerance of Tetraselmis tetrathele to high ammonium nitrogen concentrations and its effects on growth rate, photosynthetic efficiency (F
    v
    /F
    m
    ), pigment contents (chlorophyll a, lutein, neoxanthin, and β-carotene), and fatty acids production. Experiments were performed at different ammonium nitrogen concentrations (0.31-0.87 gL-1) for 6 days under a light source with an intensity of 300 μmol photons m-2 s-1 and nitrate-nitrogen source as the experimental control. The findings indicated no apparent enhancement of photosynthetic efficiency (Fv/Fm) at high levels of ammonium nitrogen (


    NH


    4


    +


    -N) for T. tetrathele within 24 h. However, after 24 h, the photosynthetic efficiency of T. tetrathele increased significantly (p < 0.05) in high concentration of


    NH


    4


    +


    -N. Chlorophyll a content in T. tetrathele grown in all of the different


    NH


    4


    +


    -N levels increased significantly compared to nitrate-nitrogen (NO3-N) treatment (p < 0.05); which supported that this microalgal could grow even in high level of


    NH


    4


    +


    -N concentrations. The findings also indicated that T. tetrathele is highly resistant to high ammonium nitrogen which suggests T. tetrathele to be used in the aquaculture industry for bioremediation purpose to remove ammonium nitrogen, thus reducing the production cost while improving the water quality.
  7. Tie HO, Che Man H, Koyama M, Syukri F, Md Yusoff F, Toda T, et al.
    Waste Manag, 2023 Jul 01;166:194-202.
    PMID: 37178588 DOI: 10.1016/j.wasman.2023.04.046
    A modified outdoor large-scale nutrient recycling system was developed to compost organic sludge and aimed to recover clean nitrogen for the cultivation of high-value-added microalgae. This study investigated the effect of calcium hydroxide addition on enhancing NH3 recovery in a pilot-scale reactor self-heated by metabolic heat of microorganisms during thermophilic composting of dewatered cow dung. 350 kg-ww of compost was prepared at the ratio of 5: 14: 1 (dewatered cowdung: rice husk: compost-seed) in a 4 m3 cylindrical rotary drum composting reactor for 14 days of aerated composting. High compost temperature up to 67 °C was observed from day 1 of composting, proving that thermophilic composting was achieved through the self-heating process. The temperature of compost increases as microbial activity increases and temperature decreases as organic matter decreases. The high CO2 evolution rate on day 0-2 (0.02-0.08 mol/min) indicated that microorganisms are most active in degrading organic matter. The increasing conversion of carbon demonstrated that organic carbon was degraded by microbial activity and emitted as CO2. The nitrogen mass balance revealed that adding calcium hydroxide to the compost and increasing the aeration rate on day 3 volatilized 9.83 % of the remaining ammonium ions in the compost, thereby improving the ammonia recovery. Moreover, Geobacillus was found to be the most dominant bacteria under elevated temperature that functions in the hydrolysis of non-dissolved nitrogen for better NH3 recovery. The presented results show that by thermophilic composting 1 ton-ds of dewatered cowdung for NH3 recovery, up to 11.54 kg-ds of microalgae can be produced.
  8. Tie HO, Che Man H, Koyama M, Syukri F, Md Yusoff F, Toda T, et al.
    Waste Manag, 2024 May 15;180:55-66.
    PMID: 38520898 DOI: 10.1016/j.wasman.2024.03.021
    Due to the rapid growth of the aquaculture industry, large amounts of organic waste are released into nature and polluted the environment. Traditional organic waste treatment such as composting is a time-consuming process that retains the ammonia (NH3) in the compost, and the compost produced has little economic value as organic fertilizer. Illegal direct discharge into the environment is therefore widespread. This study investigates the recovery of NH3 through thermophilic composting of shrimp aquaculture sludge (SAS) and its application as a soil conditioner for the growth of mango plants. A maximum composting temperature of 57.10 °C was achieved through self-heating in a 200 L bench-scale reactor, resulting in NH3 recovery of 224.04 mol/ton-ds after 14 days. The addition of calcium hydroxide and increased aeration have been shown to increase NH3 volatilization. The recovered NH3 up to 3 kg-N can be used as a source of clean nitrogen for high-value microalgae cultivation, with a theoretical yield of up to 34.85 kg-algae of microalgae biomass from 1 ton-ds of SAS composting. Despite the high salinity, SAS compost improved mango plant growth and disease resistance. These results highlight the potential of SAS compost as a sustainable source of clean nitrogen for microalgae cultivation and soil conditioner, contributing to a waste-free circular economy through nutrient recycling and sustainable agriculture.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links