Displaying all 5 publications

Abstract:
Sort:
  1. Tiew PY, Narayana JK, Quek MSL, Ang YY, Ko FWS, Poh ME, et al.
    Eur Respir J, 2023 Jan;61(1).
    PMID: 35926878 DOI: 10.1183/13993003.00507-2022
    BACKGROUND: Variable clinical outcomes are reported with fungal sensitisation in chronic obstructive pulmonary disease (COPD), and it remains unclear which fungi and what allergens associate with the poorest outcomes. The use of recombinant as opposed to crude allergens for such assessment is unknown.

    METHODS: A prospective multicentre assessment of stable COPD (n=614) was undertaken in five hospitals across three countries: Singapore, Malaysia and Hong Kong. Clinical and serological assessment was performed against a panel of 35 fungal allergens including crude and recombinant Aspergillus and non-Aspergillus allergens. Unsupervised clustering and topological data analysis (TDA) approaches were employed using the measured sensitisation responses to elucidate if sensitisation subgroups exist and their related clinical outcomes.

    RESULTS: Aspergillus fumigatus sensitisation was associated with increased exacerbations in COPD. Unsupervised cluster analyses revealed two "fungal sensitisation" groups. The first was characterised by Aspergillus sensitisation and increased exacerbations, poorer lung function and worse prognosis. Polysensitisation in this group conferred even poorer outcome. The second group, characterised by Cladosporium sensitisation, was more symptomatic. Significant numbers of individuals demonstrated sensitisation responses to only recombinant (as opposed to crude) A. fumigatus allergens f 1, 3, 5 and 6, and exhibited increased exacerbations, poorer lung function and an overall worse prognosis. TDA validated these findings and additionally identified a subgroup within Aspergillus-sensitised COPD of patients with frequent exacerbations.

    CONCLUSION: Aspergillus sensitisation is a treatable trait in COPD. Measuring sensitisation responses to recombinant Aspergillus allergens identifies an important patient subgroup with poor COPD outcomes that remains overlooked by assessment of only crude Aspergillus allergens.

  2. Poh TY, Tiew PY, Lim AYH, Thng KX, Binte Mohamed Ali NA, Narayana JK, et al.
    Chest, 2020 08;158(2):512-522.
    PMID: 32184111 DOI: 10.1016/j.chest.2020.02.048
    BACKGROUND: Chitinase activity is an important innate immune defence mechanism against infection that includes fungi. The 2 human chitinases: chitotriosidase (CHIT1) and acidic mammalian chitinase are associated to allergy, asthma, and COPD; however, their role in bronchiectasis and bronchiectasis-COPD overlap (BCO) is unknown.

    RESEARCH QUESTION: What is the association between chitinase activity, airway fungi and clinical outcomes in bronchiectasis and bronchiectasis-COPD overlap?

    STUDY DESIGN AND METHODS: A prospective cohort of 463 individuals were recruited across five hospital sites in three countries (Singapore, Malaysia, and Scotland) including individuals who were not diseased (n = 35) and who had severe asthma (n = 54), COPD (n = 90), bronchiectasis (n = 241) and BCO (n = 43). Systemic chitinase levels were assessed for bronchiectasis and BCO and related to clinical outcomes, airway Aspergillus status, and underlying pulmonary mycobiome profiles.

    RESULTS: Systemic chitinase activity is elevated significantly in bronchiectasis and BCO and exceed the activity in other airway diseases. CHIT1 activity strongly predicts bronchiectasis exacerbations and is associated with the presence of at least one Aspergillus species in the airway and frequent exacerbations (≥3 exacerbations/y). Subgroup analysis reveals an association between CHIT1 activity and the "frequent exacerbator" phenotype in South-East Asian patients whose airway mycobiome profiles indicate the presence of novel fungal taxa that include Macroventuria, Curvularia and Sarocladium. These taxa, enriched in frequently exacerbating South-East Asian patients with high CHIT1 may have potential roles in bronchiectasis exacerbations.

    INTERPRETATION: Systemic CHIT1 activity may represent a useful clinical tool for the identification of fungal-driven "frequent exacerbators" with bronchiectasis in South-East Asian populations.

  3. Tiew PY, Ko FWS, Narayana JK, Poh ME, Xu H, Neo HY, et al.
    Chest, 2020 07;158(1):145-156.
    PMID: 32092320 DOI: 10.1016/j.chest.2020.01.043
    BACKGROUND: COPD is a heterogeneous disease demonstrating inter-individual variation. A high COPD prevalence in Chinese populations is described, but little is known about disease clusters and prognostic outcomes in the Chinese population across Southeast Asia. We aim to determine if clusters of Chinese patients with COPD exist and their association with systemic inflammation and clinical outcomes.

    RESEARCH QUESTION: We aim to determine if clusters of Chinese patients with COPD exist and their association with clinical outcomes and inflammation.

    STUDY DESIGN AND METHODS: Chinese patients with stable COPD were prospectively recruited into two cohorts (derivation and validation) from six hospitals across three Southeast Asian countries (Singapore, Malaysia, and Hong Kong; n = 1,480). Each patient was followed more than 2 years. Clinical data (including co-morbidities) were employed in unsupervised hierarchical clustering (followed by validation) to determine the existence of patient clusters and their prognostic outcome. Accompanying systemic cytokine assessments were performed in a subset (n = 336) of patients with COPD to determine if inflammatory patterns and associated networks characterized the derived clusters.

    RESULTS: Five patient clusters were identified including: (1) ex-TB, (2) diabetic, (3) low comorbidity: low-risk, (4) low comorbidity: high-risk, and (5) cardiovascular. The cardiovascular and ex-TB clusters demonstrate highest mortality (independent of Global Initiative for Chronic Obstructive Lung Disease assessment) and illustrate diverse cytokine patterns with complex inflammatory networks.

    INTERPRETATION: We describe clusters of Chinese patients with COPD, two of which represent high-risk clusters. The cardiovascular and ex-TB patient clusters exhibit high mortality, significant inflammation, and complex cytokine networks. Clinical and inflammatory risk stratification of Chinese patients with COPD should be considered for targeted intervention to improve disease outcomes.

  4. Mac Aogáin M, Narayana JK, Tiew PY, Ali NABM, Yong VFL, Jaggi TK, et al.
    Nat Med, 2021 Apr;27(4):688-699.
    PMID: 33820995 DOI: 10.1038/s41591-021-01289-7
    Bronchiectasis, a progressive chronic airway disease, is characterized by microbial colonization and infection. We present an approach to the multi-biome that integrates bacterial, viral and fungal communities in bronchiectasis through weighted similarity network fusion ( https://integrative-microbiomics.ntu.edu.sg ). Patients at greatest risk of exacerbation have less complex microbial co-occurrence networks, reduced diversity and a higher degree of antagonistic interactions in their airway microbiome. Furthermore, longitudinal interactome dynamics reveals microbial antagonism during exacerbation, which resolves following treatment in an otherwise stable multi-biome. Assessment of the Pseudomonas interactome shows that interaction networks, rather than abundance alone, are associated with exacerbation risk, and that incorporation of microbial interaction data improves clinical prediction models. Shotgun metagenomic sequencing of an independent cohort validated the multi-biome interactions detected in targeted analysis and confirmed the association with exacerbation. Integrative microbiomics captures microbial interactions to determine exacerbation risk, which cannot be appreciated by the study of a single microbial group. Antibiotic strategies probably target the interaction networks rather than individual microbes, providing a fresh approach to the understanding of respiratory infection.
  5. Mac Aogáin M, Xaverius Ivan F, Jaggi TK, Richardson H, Shoemark A, Narayana JK, et al.
    PMID: 38271608 DOI: 10.1164/rccm.202306-1059OC
    INTRODUCTION: Application of whole-genome shotgun metagenomics to the airway microbiome in bronchiectasis highlights a diverse pool of antimicrobial resistance genes: the 'resistome', the clinical significance of which remains unclear.

    METHODS: Individuals with bronchiectasis were prospectively recruited into cross-sectional and longitudinal cohorts (n=280) including the international multicentre cross-sectional Cohort of Asian and Matched European Bronchiectasis 2 study (CAMEB 2; n=251) and two independent cohorts, one describing patients experiencing acute exacerbation and a further cohort of patients undergoing P. aeruginosa eradication treatment. Sputum was subjected to metagenomic sequencing and the bronchiectasis resistome evaluated in association with clinical outcomes and underlying host microbiomes.

    RESULTS: The bronchiectasis resistome features a unique resistance gene profile and elevated counts of aminoglycoside, bicyclomycin, phenicol, triclosan and multi-drug resistance genes. Longitudinally, it exhibits within-patient stability over time and during exacerbations despite between-patient heterogeneity. Proportional differences in baseline resistome profiles including increased macrolide and multi-drug resistance genes associate with shorter intervals to next exacerbation, while distinct resistome archetypes associate with frequent exacerbations, poorer lung function, geographic origin, and the host microbiome. Unsupervised analysis of resistome profiles identified two clinically relevant 'resistotypes' RT1 and RT2, the latter characterized by poor clinical outcomes, increased multi-drug resistance and P. aeruginosa. Successful targeted eradication in P. aeruginosa-colonized individuals mediated reversion from RT2 to RT1, a more clinically favourable resistome profile demonstrating reduced resistance gene diversity.

    CONCLUSION: The bronchiectasis resistome associates with clinical outcomes, geographic origin, and the underlying host microbiome. Bronchiectasis 'resistotypes' link to clinical disease and are modifiable through targeted antimicrobial therapy. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links