Carbon nanotubes (CNTs) possess remarkable properties that make them valuable for various industrial applications. However, concerns have arisen regarding their potential adverse health effects, particularly in occupational settings. The main aim of this research was to examine the effects of short-term exposure to multiwalled carbon nanotube nanoparticles (MWCNT-NPs) on testicular oxidative stress in Swiss albino mice, taking into account various factors such as dosage, duration of exposure, and particle size of MWCNT-NP. In this study, 20 mice were used and placed into six different groups randomly. Four of these groups comprised four repetitions each, while the two groups served as the vehicle control with two repetitions each. The experimental groups received MWCNT-NP treatment, whereas the control group remained untreated. The mice in the experimental groups were exposed to MWCNT-NP for either 7 days or 14 days. Through oral administration, the MWCNT-NP solution was introduced at two distinct dosages: 0.45 and 0.90 μg, whereas the control group was subjected to distilled water rather than the MWCNT-NP solution. The investigation evaluated primary oxidative balance indicators-glutathione (GSH) and glutathione disulfide (GSSG)-in response to MWCNT-NP exposure. Significantly, a noticeable reduction in GSH levels and a concurrent increase in GSSG concentrations were observed in comparison to the control group. To better understand and explore the assessment of the redox status, the Nernst equation was used to calculate the redox potential. Intriguingly, the calculated redox potential exhibited a negative value, signifying an imbalance in the oxidative state in the testes. These findings suggest that short-term exposure to MWCNT-NP can lead to the initiation of testicular oxidative stress and may disrupt the male reproductive system. This is evident from the alterations observed in the levels of GSH and GSSG, as well as the negative redox potential. The research offers significant insights into the reproductive effects of exposure to MWCNTs and emphasizes the necessity of assessing oxidative stress in nanomaterial toxicity studies.
The urgent need to address the severe environmental risk posed by chromium-contaminated industrial wastewater necessitates the development of eco-friendly cleanup methodologies. Utilizing the Ficus benghalensis plant extracts, the present study aims to develop green zinc oxide nanoparticles for the removal of Cr metal ions from wastewater. The leaves of Ficus benghalensis, often known as the banyan tree, were used to extract a solution for synthesizing ZnO NPs. These nanoparticles were developed with the goal of efficiently eliminating chromium (Cr) from industrial effluents. Batch studies were carried out to assess the efficiency of these synthesized ZnO NPs in treating leather industrial effluent, with aiming for optimal chromium removal. This involved measuring the nanoparticles' capacity to adsorb Cr ions from wastewater samples by comparing chromium levels before and after treatment. Removal efficiency for Cr was estimated through the batches such as optimization of pH, contact time, initial Cr concentration and sorbent dose of ZnO NPs were of the batches. These synthesized ZnO NPs were found to be successful in lowering chromium levels in wastewater to meet permissible limit. The nanoparticles exhibited their highest absorption capacity, reaching 94 % (46 mg/g) at pH 4, with a contact time of 7 hours with the optimum sorbent dose of 0.6 g/L. Hence, the excellent adsorption capabilities of these nanoparticles, together with their environmentally benign manufacturing technique, provide a long-term and efficient solution for chromium-contaminated wastewater treatment. Its novel nature has the potential to significantly improve the safety and cleanliness of water ecosystems, protecting the both i.e. human health and the environment.
The aim of the present study was to assess the drinking water quality in the selected urban areas of Lahore and to comprehend the public health status by addressing the basic drinking water quality parameters. Total 50 tap water samples were collected from groundwater in the two selected areas of district Lahore i.e., Gulshan-e-Ravi (site 1) and Samanabad (site 2). Water samples were analyzed in the laboratory to elucidate physico-chemical parameters including pH, turbidity, temperature, total dissolved solids (TDS), electrical conductivity (EC), dissolved oxygen (DO), total hardness, magnesium hardness, and calcium hardness. These physico-chemical parameters were used to examine the Water Quality Index (WQI) and Synthetic Pollution Index (SPI) in order to characterize the water quality. Results of th selected physico-chemical parameters were compared with World Health Organization (WHO) guidelines to determine the quality of drinking water. A GIS-based approach was used for mapping water quality, WQI, and SPI. Results of the present study revealed that the average value of temperature, pH, and DO of both study sites were within the WHO guidelines of 23.5 °C, 7.7, and 6.9 mg/L, respectively. The TDS level of site 1 was 192.56 mg/L (within WHO guidelines) and whereas, in site 2 it was found 612.84 mg/L (higher than WHO guidelines), respectively. Calcium hardness of site 1 and site 2 was observed within the range from 25.04 to 65.732 mg/L but, magnesium hardness values were higher than WHO guidelines. The major reason for poor water quality is old, worn-out water supply pipelines and improper waste disposal in the selected areas. The average WQI was found as 59.66 for site 1 and 77.30 for site 2. Results showed that the quality of the water was classified as "poor" for site 1 and "very poor " for site 2. There is a need to address the problem of poor water quality and also raise the public awareness about the quality of drinking water and its associated health impacts.