Displaying all 2 publications

Abstract:
Sort:
  1. Nasir MS, Mohd Yahya AR, Md Noh NA
    Trop Life Sci Res, 2024 Mar;35(1):33-47.
    PMID: 39262861 DOI: 10.21315/tlsr2024.35.1.3
    Rhamnolipid has gained much attention in various fields owing to its distinctive functional properties compared to conventional chemical surfactants, which are mostly derived from petroleum feedstock. Production cost is one of the main challenges in rhamnolipid production, particularly when using refined substrates. One possible solution is to use agro-industrial wastes as substrates for rhamnolipid production. This is a promising strategy due to their abundance and commercially low value, while simultaneously alleviating an agro-industrial waste management problem in the environment. This study aims to evaluate agro-industrial wastes from local crops as possible low-cost alternative substrates for rhamnolipid production by a local isolate, Pseudomonas aeruginosa USM-AR2. Various liquid wastes, namely sugarcane molasses, rice washing water, overly mature coconut (OMC) water, empty fruit bunch (EFB) steam effluent, palm sludge oil (PSO) and palm oil mill effluent (POME) were screened as the main carbon source supplementing mineral salt medium (MSM) in the fermentation of P. aeruginosa USM-AR2. Batch fermentation was carried out in a shake flask system, agitated at 200 rpm and incubated at room temperature, 27 ± 2°C for 120 h. Among the substrates tested, PSO exhibited the highest biomass at 20.78 g/L and rhamnolipid production at 1.07 g/L. This study has shown the potential of agro-industrial wastes in Malaysia as an alternative resource for rhamnolipid production, transforming them into value added products, while reducing the amount of wastes discharged into the environment.
  2. Nasir MS, Yahya ARM, Noh NAM
    PMID: 39538032 DOI: 10.1007/s00449-024-03103-3
    The study focused on rhamnolipid production by batch fermentation of Pseudomonas aeruginosa USM-AR2 in a 3-L stirred-tank reactor (STR) using palm sludge oil (PSO) as the sole carbon source. The impact of various agitation rates towards the dispersion of PSO in the medium was evaluated to improve biomass growth and rhamnolipid production. A mechanical foam collection and recycling system was designed and retrofitted to the STR to overcome severe foam formation during fermentation. The maximum biomass produced was 11.29 ± 0.20 g/L obtained at 400 rpm, while the maximum rhamnolipid production was 5.06 ± 1.17 g/L at 600 rpm, giving a rhamnolipid productivity of 0.023 g/L/h. High agitation enhances substrate availability by breaking the hydrophobic semi-solid PSO into smaller substrate particles, increasing surface contact area, thus facilitating the PSO utilisation by P. aeruginosa USM-AR2, thereby inducing rhamnolipid production. This study further demonstrates the ability of rhamnolipid to solubilize and disperse sludge oil, which typically remains a solid at room temperature, in the liquid medium. GCMS analysis showed that five fatty acids, namely palmitic acid, myristic acid, stearic acid, methyl ester and linoleic acid, have been utilised. The rhamnolipid showed an oil spreading test result of 160 mm of waste engine oil displacement compared to control using distilled water that remained non-displaced, and a critical micelle concentration (CMC) of 17 mg/L. In emulsification index (E24) assay, the rhamnolipid was shown to emulsify toluene (66.7% ± 7.2), waste engine oil (58.3% ± 7.2), kerosene (41.8% ± 4.8) and n-hexane (33.1% ± 5.7). UPLC analysis on rhamnolipid revealed a congener mixture of rhamnolipid, namely di-rhamnolipid and mono-rhamnolipid mixture. This is the first report on the employment of an integrated foam control reactor system with PSO as the carbon source for rhamnolipid production by P. aeruginosa USM-AR2 culture.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links