Displaying all 6 publications

Abstract:
Sort:
  1. Kashi E, Surip SN, Khadiran T, Nawawi WI, De Luna Y, Yaseen ZM, et al.
    Int J Biol Macromol, 2024 Feb;259(Pt 1):129147.
    PMID: 38181921 DOI: 10.1016/j.ijbiomac.2023.129147
    A composite of chitosan biopolymer with microalgae and commercial carbon-doped titanium dioxide (kronos) was modified by grafting an aromatic aldehyde (salicylaldehyde) in a hydrothermal process for the removal of brilliant green (BG) dye. The resulting Schiff's base Chitosan-Microalgae-TiO2 kronos/Salicylaldehyde (CsMaTk/S) material was characterised using various analytical methods (conclusive of physical properties using BET surface analysis method, elemental analysis, FTIR, SEM-EDX, XRD, XPS and point of zero charge). Box Behnken Design was utilised for the optimisation of the three input variables, i.e., adsorbent dose, pH of the media and contact time. The optimum conditions appointed by the optimisation process were further affirmed by the desirability test and employed in the equilibrium studies in batch mode and the results exhibited a better fit towards the pseudo-second-order kinetic model as well as Freundlich and Langmuir isotherm models, with a maximum adsorption capacity of 957.0 mg/g. Furthermore, the reusability study displayed the adsorptive performance of CsMaTk/S remains effective throughout five adsorption cycles. The possible interactions between the dye molecules and the surface of the adsorbent were derived based on the analyses performed and the electrostatic attractions, H-bonding, Yoshida-H bonding, π-π and n-π interactions are concluded to be the responsible forces in this adsorption process.
  2. Natar NS, Ghani NIA, Hamzah SR, Rosli MA, Muhamad NA, Azami MS, et al.
    Nanomaterials (Basel), 2022 Nov 13;12(22).
    PMID: 36432284 DOI: 10.3390/nano12223998
    The limitations of TiO2 as a photocatalyst such as the larger bandgap energy, which only activates under the UV region, give a lower photocatalytic activity. This study reports the role of the N and Pt co-dopant on the modification of the TiO2 photocatalyst for photocatalytic degradation of methylene blue dye under different mode preparations, i.e., sequential and vice-versa modes. The sequential mode preparation of the N and Pt co-dopant TiO2 photocatalyst consisted of the initial preparation of the N-doped TiO2 (N-TiO2) under the calcination method, which was then further doped with platinum (Pt) through the photodeposition process labeled as NPseq-TiO2, while the vice-versa mode was labeled as PNrev-TiO2. About 1.58 wt.% of N element was found in the NPseq-TiO2 photocatalyst, while there was no presence of N element detected in PNrev-TiO2, confirmed through an elemental analyzer (CHNS-O) and (EDX) analysis. The optimum weight percentage of Pt for both modes was detected at about ±2.0 wt.%, which was confirmed by inductively coupled plasma-emission spectroscopy (ICP-OES). The photoactivity under methylene blue (MB) dye degradation of the NPseq-TiO2 photocatalyst was 2 and 1.5 times faster compared to the unmodified TiO2 and PNrev-TiO2, where the photodegradation rates were, ca., 0.065 min-1 and 0.078 min-1, respectively. This was due to the N elements being incorporated with the TiO2 lattice, which was proven by UV-Vis/DRS where the bandgap energy of NPseq-TiO2 was reduced from 3.2 eV to 2.9 eV. In addition, the N generated a stronger PL signal due to the formation of oxygen vacancies defects on the surface of the NPseq-TiO2 photocatalyst. The higher specific surface area as well as higher pore volume for the NPseq-TiO2 photocatalyst enhanced its photocatalytic activity. Moreover, the NPseq-TiO2 showed the lowest COD value, and it was completely mineralized after 7 h of light irradiation. The preparation order did not affect the Pt dopant but did for the N element. Therefore, it is significant to investigate different mode preparations of the N and Pt co-dopant for the modification of TiO2 to produce a good-quality photocatalyst for photocatalytic study under the photodegradation of MB dye.
  3. Hayat A, Sohail M, Qadeer A, Taha TA, Hussain M, Ullah S, et al.
    Chem Rec, 2022 Dec;22(12):e202200097.
    PMID: 36103617 DOI: 10.1002/tcr.202200097
    Use of MXenes (Ti3 C2 Tx ), which belongs to the family of two-dimensional transition metal nitrides and carbides by encompassing unique combination of metallic conductivity and hydrophilicity, is receiving tremendous attention, since its discovery as energy material in 2011. Owing to its precursor selective chemical etching, and unique intrinsic characteristics, the MXene surface properties are further classified into highly chemically active compound, which further produced different surface functional groups i. e., oxygen, fluorine or hydroxyl groups. However, the role of surface functional groups doesn't not only have a significant impact onto its electrochemical and hydrophilic characteristics (i. e., ion adsorption/diffusion), but also imparting a noteworthy effect onto its conductivity, work function, electronic structure and properties. Henceforth, such kind of inherent chemical nature, robust electrochemistry and high hydrophilicity ultimately increasing the MXene application as a most propitious material for overall environment-remediation, electrocatalytic sensors, energy conversion and storage application. Moreover, it is well documented that the role of MXenes in all kinds of research fields is still on a progress stage for their further improvement, which is not sufficiently summarized in literature till now. The present review article is intended to critically discuss the different chemical aptitudes and the diversity of MXenes and its derivates (i. e., hybrid composites) in all aforesaid application with special emphasis onto the improvement of its surface characteristics for the multidimensional application. However, this review article is anticipated to endorse MXenes and its derivates hybrid configuration, which is discussed in detail for emerging environmental decontamination, electrochemical use, and pollutant detection via electrocatalytic sensors, photocatalysis, along with membrane distillation and the adsorption application. Finally, it is expected, that this review article will open up new window for the effective use of MXene in a broad range of environmental remediation, energy conversion and storage application as a novel, robust, multidimensional and more proficient materials.
  4. Hayat A, Sohail M, Ali Shah Syed J, Al-Sehemi AG, Mohammed MH, Al-Ghamdi AA, et al.
    Chem Rec, 2022 Feb 09.
    PMID: 35138017 DOI: 10.1002/tcr.202100310
    Being one of the foremost enticing and intriguing innovations, heterogeneous photocatalysis has also been used to effectively gather, transform, and conserve sustainable sun's radiation for the production of efficient and clean fossil energy as well as a wide range of ecological implications. The generation of solar fuel-based water splitting and CO2 photoreduction is excellent for generating alternative resources and reducing global warming. Developing an inexpensive photocatalyst can effectively split water into hydrogen (H2 ), oxygen (O2 ) sources, and carbon dioxide (CO2 ) into fuel sources, which is a crucial problem in photocatalysis. The metal-free g-C3 N4 photocatalyst has a high solar fuel generation potential. This review covers the most recent advancements in g-C3 N4 preparation, including innovative design concepts and new synthesis methods, and novel ideas for expanding the light absorption of pure g-C3 N4 for photocatalytic application. Similarly, the main issue concerning research and prospects in photocatalysts based g-C3 N4 was also discussed. The current dissertation provides an overview of comprehensive understanding of the exploitation of the extraordinary systemic and characteristics, as well as the fabrication processes and uses of g-C3 N4 .
  5. Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, et al.
    Chem Rec, 2022 Nov 21.
    PMID: 36408911 DOI: 10.1002/tcr.202200149
    Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
  6. Hayat A, Sohail M, Anwar U, Taha TA, Qazi HIA, Amina, et al.
    Chem Rec, 2023 Jan;23(1):e202200143.
    PMID: 36285706 DOI: 10.1002/tcr.202200143
    The increasing demand for searching highly efficient and robust technologies in the context of sustainable energy production totally rely onto the cost-effective energy efficient production technologies. Solar power technology in this regard will perceived to be extensively employed in a variety of ways in the future ahead, in terms of the combustion of petroleum-based pollutants, CO2 reduction, heterogeneous photocatalysis, as well as the formation of unlimited and sustainable hydrogen gas production. Semiconductor-based photocatalysis is regarded as potentially sustainable solution in this context. g-C3 N4 is classified as non-metallic semiconductor to overcome this energy demand and enviromental challenges, because of its superior electronic configuration, which has a median band energy of around 2.7 eV, strong photocatalytic stability, and higher light performance. The photocatalytic performance of g-C3 N4 is perceived to be inadequate, owing to its small surface area along with high rate of charge recombination. However, various synthetic strategies were applied in order to incorporate g-C3 N4 with different guest materials to increase photocatalytic performance. After these fabrication approaches, the photocatalytic activity was enhanced owing to generation of photoinduced electrons and holes, by improving light absorption ability, and boosting surface area, which provides more space for photocatalytic reaction. In this review, various metals, non-metals, metals oxide, sulfides, and ferrites have been integrated with g-C3 N4 to form mono, bimetallic, heterojunction, Z-scheme, and S-scheme-based materials for boosting performance. Also, different varieties of g-C3 N4 were utilized for different aspects of photocatalytic application i. e., water reduction, water oxidation, CO2 reduction, and photodegradation of dye pollutants, etc. As a consequence, we have assembled a summary of the latest g-C3 N4 based materials, their uses in solar energy adaption, and proper management of the environment. This research will further well explain the detail of the mechanism of all these photocatalytic processes for the next steps, as well as the age number of new insights in order to overcome the current challenges.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links