Displaying all 2 publications

Abstract:
Sort:
  1. Prabhakaran P, Nazir MYM, Thananusak R, Hamid AA, Vongsangnak W, Song Y
    PMID: 37625782 DOI: 10.1016/j.bbalip.2023.159381
    Aurantiochytrium sp., a marine thraustochytrid possesses a remarkable ability to produce lipid rich in polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA). Although gene regulation underlying lipid biosynthesis has been previously reported, proteomic analysis is still limited. In this study, high DHA accumulating strain Aurantiochytrium sp. SW1 has been used as a study model to elucidate the alteration in proteome profile under different cultivation phases i.e. growth, nitrogen-limitation and lipid accumulation. Of the total of 5146 identified proteins, 852 proteins were differentially expressed proteins (DEPs). The largest number of DEPs (488 proteins) was found to be uniquely expressed between lipid accumulating phase and growth phase. Interestingly, there were up-regulated proteins involved in glycolysis, glycerolipid, carotenoid and glutathione metabolism which were preferable metabolic routes towards lipid accumulation and DHA production as well as cellular oxidative defence. Integrated proteomic and transcriptomic data were also conducted to comprehend the gene and protein regulation underlying the lipid and DHA biosynthesis. A significant up-regulation of acetyl-CoA synthetase was observed which suggests alternative route of acetate metabolism for acetyl-CoA producer. This study presents the holistic routes underlying lipid accumulation and DHA production in Aurantiochytrium sp. SW1 and other relevant thraustochytrid.
  2. Prabhakaran P, Raethong N, Thananusak R, Nazir MYM, Sapkaew C, Soommat P, et al.
    PMID: 36907245 DOI: 10.1016/j.bbalip.2023.159306
    Aurantiochytrium sp. SW1, a marine thraustochytrid, has been regarded as a potential candidate as a docosahexaenoic acid (DHA) producer. Even though the genomics of Aurantiochytrium sp. are available, the metabolic responses at a systems level are largely unknown. Therefore, this study aimed to investigate the global metabolic responses to DHA production in Aurantiochytrium sp. through transcriptome and genome-scale network-driven analysis. Of a total of 13,505 genes, 2527 differentially expressed genes (DEGs) were identified in Aurantiochytrium sp., unravelling the transcriptional regulations behinds lipid and DHA accumulation. The highest number of DEG were found for pairwise comparison between growth phase and lipid accumulating phase where a total of 1435 genes were down-regulated with 869 genes being up-regulated. These uncovered several metabolic pathways that contributing in DHA and lipid accumulation including amino acid and acetate metabolism which involve in the generation of crucial precursors. Upon applying network-driven analysis, hydrogen sulphide was found as potential reporter metabolite that could be associated with the genes related to acetyl-CoA synthesis for DHA production. Our findings suggest that the transcriptional regulation of these pathways is a ubiquitous feature in response to specific cultivation phases during DHA overproduction in Aurantiochytrium sp. SW1.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links