Affiliations 

  • 1 Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
  • 2 Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Department of Food Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, UKM, Bangi, Malaysia
  • 3 Duckweed Holobiont Resource & Research Center (DHbRC), Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
  • 4 Department of Biological Science and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Malaysia. Electronic address: aidilah@ukm.edu.my
  • 5 Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand; Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand. Electronic address: wanwipa.v@ku.ac.th
  • 6 Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China. Electronic address: ysong@sdut.edu.cn
PMID: 37625782 DOI: 10.1016/j.bbalip.2023.159381

Abstract

Aurantiochytrium sp., a marine thraustochytrid possesses a remarkable ability to produce lipid rich in polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA). Although gene regulation underlying lipid biosynthesis has been previously reported, proteomic analysis is still limited. In this study, high DHA accumulating strain Aurantiochytrium sp. SW1 has been used as a study model to elucidate the alteration in proteome profile under different cultivation phases i.e. growth, nitrogen-limitation and lipid accumulation. Of the total of 5146 identified proteins, 852 proteins were differentially expressed proteins (DEPs). The largest number of DEPs (488 proteins) was found to be uniquely expressed between lipid accumulating phase and growth phase. Interestingly, there were up-regulated proteins involved in glycolysis, glycerolipid, carotenoid and glutathione metabolism which were preferable metabolic routes towards lipid accumulation and DHA production as well as cellular oxidative defence. Integrated proteomic and transcriptomic data were also conducted to comprehend the gene and protein regulation underlying the lipid and DHA biosynthesis. A significant up-regulation of acetyl-CoA synthetase was observed which suggests alternative route of acetate metabolism for acetyl-CoA producer. This study presents the holistic routes underlying lipid accumulation and DHA production in Aurantiochytrium sp. SW1 and other relevant thraustochytrid.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.