Displaying all 4 publications

Abstract:
Sort:
  1. Prabhakaran P, Hassiotou F, Blancafort P, Filgueira L
    Front Oncol, 2013;3:134.
    PMID: 23761858 DOI: 10.3389/fonc.2013.00134
    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36-51% and proliferation capacity by 36-67%. Treatment with cisplatin resulted in 12-67% down-regulation of stem cell markers (CD49f, SSEA4) and 10-130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor.
  2. Prabhakaran P, Nazir MYM, Thananusak R, Hamid AA, Vongsangnak W, Song Y
    PMID: 37625782 DOI: 10.1016/j.bbalip.2023.159381
    Aurantiochytrium sp., a marine thraustochytrid possesses a remarkable ability to produce lipid rich in polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA). Although gene regulation underlying lipid biosynthesis has been previously reported, proteomic analysis is still limited. In this study, high DHA accumulating strain Aurantiochytrium sp. SW1 has been used as a study model to elucidate the alteration in proteome profile under different cultivation phases i.e. growth, nitrogen-limitation and lipid accumulation. Of the total of 5146 identified proteins, 852 proteins were differentially expressed proteins (DEPs). The largest number of DEPs (488 proteins) was found to be uniquely expressed between lipid accumulating phase and growth phase. Interestingly, there were up-regulated proteins involved in glycolysis, glycerolipid, carotenoid and glutathione metabolism which were preferable metabolic routes towards lipid accumulation and DHA production as well as cellular oxidative defence. Integrated proteomic and transcriptomic data were also conducted to comprehend the gene and protein regulation underlying the lipid and DHA biosynthesis. A significant up-regulation of acetyl-CoA synthetase was observed which suggests alternative route of acetate metabolism for acetyl-CoA producer. This study presents the holistic routes underlying lipid accumulation and DHA production in Aurantiochytrium sp. SW1 and other relevant thraustochytrid.
  3. Abu Bakar NFAB, Yeo ZL, Hussin F, Madhavan P, Lim V, Jemon K, et al.
    J Taibah Univ Med Sci, 2023 Dec;18(6):1220-1236.
    PMID: 37250812 DOI: 10.1016/j.jtumed.2023.04.003
    OBJECTIVE: Triple negative breast cancer (TNBC) is the most invasive breast cancer subtype enriched with cancer stem cells. TNBCs do not express estrogen, progesterone, or human epidermal growth factor receptor 2 (HER2) receptors, making them difficult to be targeted by existing chemotherapy treatments. In this study, we attempted to identify the effects of combined cisplatin and Clinacanthus nutans treatment on MDA-MD-231 and MDA-MB-468 breast cancer cells, which represent TNBC subtypes.

    METHODS: The phytochemical fingerprint of C. nutans ethanolic leaf extract was evaluated by LC-MS/MS analysis. We investigated the effects of cisplatin (0-15.23 μg/mL), C. nutans (0-50 μg/mL), and a combination of cisplatin (3.05 μg/mL) and C. nutans (0-50 μg/mL), on cell viability, proliferation, apoptosis, invasion, mRNA expression in cancer stem cells (CD49f, KLF4), and differentiation markers (TUBA1A, KRT18) in TNBC cells. In addition, we also studied the interaction between cisplatin and C. nutans.

    RESULTS: Derivatives of fatty acids, carboxylic acid ester, and glycosides, were identified as the major bioactive compounds with potential anticancer properties in C. nutans leaf extract. Reductions in cell viability (0-78%) and proliferation (2-77%), as well as a synergistic anticancer effect, were identified in TNBC cells when treated with a combination of cisplatin and C. nutans. Furthermore, apoptotic induction via increased caspase-3/7 activity (MDA-MB-231: 2.73-fold; MDA-MB-468: 3.53-fold), and a reduction in cell invasion capacity to 36%, were detected in TNBC cells when compared to single cisplatin and C. nutans treatments. At the mRNA level, cisplatin and C. nutans differentially regulated specific genes that are responsible for proliferation and differentiation.

    CONCLUSION: Our findings demonstrate that the combination of cisplatin and C. nutans represents a potential treatment for TNBC.

  4. Prabhakaran P, Raethong N, Thananusak R, Nazir MYM, Sapkaew C, Soommat P, et al.
    PMID: 36907245 DOI: 10.1016/j.bbalip.2023.159306
    Aurantiochytrium sp. SW1, a marine thraustochytrid, has been regarded as a potential candidate as a docosahexaenoic acid (DHA) producer. Even though the genomics of Aurantiochytrium sp. are available, the metabolic responses at a systems level are largely unknown. Therefore, this study aimed to investigate the global metabolic responses to DHA production in Aurantiochytrium sp. through transcriptome and genome-scale network-driven analysis. Of a total of 13,505 genes, 2527 differentially expressed genes (DEGs) were identified in Aurantiochytrium sp., unravelling the transcriptional regulations behinds lipid and DHA accumulation. The highest number of DEG were found for pairwise comparison between growth phase and lipid accumulating phase where a total of 1435 genes were down-regulated with 869 genes being up-regulated. These uncovered several metabolic pathways that contributing in DHA and lipid accumulation including amino acid and acetate metabolism which involve in the generation of crucial precursors. Upon applying network-driven analysis, hydrogen sulphide was found as potential reporter metabolite that could be associated with the genes related to acetyl-CoA synthesis for DHA production. Our findings suggest that the transcriptional regulation of these pathways is a ubiquitous feature in response to specific cultivation phases during DHA overproduction in Aurantiochytrium sp. SW1.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links