RESULTS: Olfactory perception detected fragrance only from the petals and sepals. Light and Environmental Scanning Electron microscopy analyses on fresh tissues showed distributions of stomata and trichomes concentrated mostly around the edges. These results paralleled the rich starch deposits and intense neutral red stain, indicating strong fragrance and trichomes as potential main fragrance release sites. Next Generation Sequencing (NGS) transcriptomic data of adaxial and abaxial layers of the tissues showed monoterpene synthase transcripts specifically linalool and ocimene synthases distributed throughout the tissues. qPCR analyses taken at different time points revealed high levels of linalool and ocimene synthases transcripts in the early morning with maximal level at 4.00 am but remained low throughout daylight hours.
CONCLUSIONS: Knowledge of the VMP floral anatomy and its fragrance production characteristics, which complemented our previous molecular and biochemical data on VMP, provided additional knowledge on how fragrance and flower morphology are closely intertwined. Further investigation on the mechanisms of fragrance biosynthesis and interaction of potential pollinators would elucidate the evolution of the flower morphology to maximize the reproduction success of this plant.
OBJECTIVE: The main objective of the present study was to identify the cancer-related genes and gene pathways in the endometrium of healthy and cancer patients.
MATERIALS AND METHODS: Thirty endometrial tissues from healthy and type I EC patients were subjected to total RNA isolation. The RNA samples with good integrity number were hybridized to a new version of Affymetrix Human Genome GeneChip 1.0 ST array. We analyzed the results using the GeneSpring 9.0 GX and the Pathway Studio 6.1 software. For validation assay, quantitative real-time polymerase chain reaction was used to analyze 4 selected genes in normal and EC tissue.
RESULTS: Of the 28,869 genes profiled, we identified 621 differentially expressed genes (2-fold) in the normal tissue and the tumor. Among these genes, 146 were up-regulated and 476 were down-regulated in the tumor as compared with the normal tissue (P < 0.001). Up-regulated genes included the v-erb-a erythroblastic leukemia viral oncogene homolog 3 (ErbB3), ErbB4, E74-like factor 3 (ELF3), and chemokine ligand 17 (CXCL17). The down-regulated genes included signal transducer and activator transcription 5B (STAT5b), transforming growth factor A receptor III (TGFA3), caveolin 1 (CAV1), and protein kinase C alpha (PKCA). The gene set enrichment analysis showed 10 significant gene sets with related genes (P < 0.05). The quantitative polymerase chain reaction of 4 selected genes using similar RNA confirmed the microarray results (P < 0.05).
CONCLUSIONS: Identification of molecular pathways with their genes related to type I EC contribute to the understanding of pathophysiology of this cancer, probably leading to identifying potential biomarkers of the cancer.
DESCRIPTION: The hemibiotroph G. boninense establishes via root contact during early stage of colonization and subsequently kills the host tissue as the disease progresses. Information on the pathogenicity factors/genes that causes BSR remain poorly understood. In addition, the molecular expressions corresponding to G. boninense growth and pathogenicity are not reported. Here, six transcriptome datasets of G. boninense from two contrasting conditions (three biological replicates per condition) are presented. The first datasets, collected from a 7-day-old axenic condition provide an insight onto genes responsible for sustenance, growth and development of G. boninense while datasets of the infecting G. boninense collected from oil palm-G. boninense pathosystem (in planta condition) at 1 month post-inoculation offer a comprehensive avenue to understand G. boninense pathogenesis and infection especially in regard to molecular mechanisms and pathways. Raw sequences deposited in Sequence Read Archive (SRA) are available at NCBI SRA portal with PRJNA514399, bioproject ID.
RESULTS: Tumors with a variety of clinical and pathological characteristics were selected. Gene expression stability and the optimal number of reference genes for gene expression normalization were calculated. RPS5 and HNRNPH were highly stable among OS cell lines, while RPS5 and RPS19 were the best combination for primary tumors. Pairwise variation analysis recommended four and two reference genes for optimal normalization of the expression data of canine OS tumors and cell lines, respectively.
CONCLUSIONS: Appropriate combinations of reference genes are recommended to normalize mRNA levels in canine OS tumors and cell lines to facilitate standardized and reliable quantification of target gene expression, which is essential for investigating key genes involved in canine OS metastasis and for comparative biomarker discovery.
RESULTS: Firstly, from the expression profiles of Na+/K+/2Cl- cotransporter, chloride channel protein 2, and ABC transporter, it turned out that the 24 h might be the most influenced duration in the short-term stress. We collected megalopa under different salinity for 24 h and then submitted to mRNA profiling. Totally, 57.87 Gb Clean Data were obtained. The comparative genomic analysis detected 342 differentially expressed genes (DEGs). The most significantly DEGs include gamma-butyrobetaine dioxygenase-like, facilitated trehalose transporter Tret1, sodium/potassium-transporting ATPase subunit alpha, rhodanese 1-like protein, etc. And the significantly enriched pathways were lysine degradation, choline metabolism in cancer, phospholipase D signaling pathway, Fc gamma R-mediated phagocytosis, and sphingolipid signaling pathway. The results indicate that in the short-term salinity stress, the megalopa might regulate some mechanism such as metabolism, immunity responses, osmoregulation to adapt to the alteration of the environment.
CONCLUSIONS: This study represents the first genome-wide transcriptome analysis of S. paramamosain megalopa for studying its stress adaption mechanisms under different salinity. The results reveal numbers of genes modified by salinity stress and some important pathways, which will provide valuable resources for discovering the molecular basis of salinity stress adaptation of S. paramamosain larvae and further boost the understanding of the potential molecular mechanisms of salinity stress adaptation for crustacean species.