RESULTS: Olfactory perception detected fragrance only from the petals and sepals. Light and Environmental Scanning Electron microscopy analyses on fresh tissues showed distributions of stomata and trichomes concentrated mostly around the edges. These results paralleled the rich starch deposits and intense neutral red stain, indicating strong fragrance and trichomes as potential main fragrance release sites. Next Generation Sequencing (NGS) transcriptomic data of adaxial and abaxial layers of the tissues showed monoterpene synthase transcripts specifically linalool and ocimene synthases distributed throughout the tissues. qPCR analyses taken at different time points revealed high levels of linalool and ocimene synthases transcripts in the early morning with maximal level at 4.00 am but remained low throughout daylight hours.
CONCLUSIONS: Knowledge of the VMP floral anatomy and its fragrance production characteristics, which complemented our previous molecular and biochemical data on VMP, provided additional knowledge on how fragrance and flower morphology are closely intertwined. Further investigation on the mechanisms of fragrance biosynthesis and interaction of potential pollinators would elucidate the evolution of the flower morphology to maximize the reproduction success of this plant.
DATA DESCRIPTION: The conventional CTAB method was employed in the present investigation to extract total RNA from leaf tissues. Transcriptome sequencing was conducted on the Illumina NovaSeq 6000 platform. Differential expression analysis was performed using the DESeq2 package. A total of 6,119 differentially expressed genes, comprising 4,384 downregulated and 1,735 upregulated genes, were expressed in all three sago palm datasets. The datasets provide insights into the commonly expressed genes among trunking sago palms.
METHODS: The genome sequence was used as a reference to study gene expression during growth in a starved carbon (C) and nitrogen (N) environment with minimal sugar and sawdust as initial energy sources. This study was conducted to mimic possible limitations of the C-N nutrient sources during the growth of G. boninense in oil palm plantations.
RESULTS: Genome sequencing of an isolate collected from a palm tree in West Malaysia generated an assembly of 67.12 Mb encoding 19,851 predicted genes. Transcriptomic analysis from a time course experiment during growth in this starvation media identified differentially expressed genes (DEGs) that were found to be associated with 29 metabolic pathways. During the active growth phase, 26 DEGs were related to four pathways, including secondary metabolite biosynthesis, carbohydrate metabolism, glycan metabolism and mycotoxin biosynthesis. G. boninense genes involved in the carbohydrate metabolism pathway that contribute to the degradation of plant cell walls were up-regulated. Interestingly, several genes associated with the mycotoxin biosynthesis pathway were identified as playing a possible role in pathogen-host interaction. In addition, metabolomics analysis revealed six metabolites, maltose, xylobiose, glucooligosaccharide, glycylproline, dimethylfumaric acid and arabitol that were up-regulated on Day2 of the time course experiment.
CONCLUSIONS: This study provides information on genes expressed by G. boninense in metabolic pathways that may play a role in the initial infection of the host.
OBJECTIVE: The main objective of the present study was to identify the cancer-related genes and gene pathways in the endometrium of healthy and cancer patients.
MATERIALS AND METHODS: Thirty endometrial tissues from healthy and type I EC patients were subjected to total RNA isolation. The RNA samples with good integrity number were hybridized to a new version of Affymetrix Human Genome GeneChip 1.0 ST array. We analyzed the results using the GeneSpring 9.0 GX and the Pathway Studio 6.1 software. For validation assay, quantitative real-time polymerase chain reaction was used to analyze 4 selected genes in normal and EC tissue.
RESULTS: Of the 28,869 genes profiled, we identified 621 differentially expressed genes (2-fold) in the normal tissue and the tumor. Among these genes, 146 were up-regulated and 476 were down-regulated in the tumor as compared with the normal tissue (P < 0.001). Up-regulated genes included the v-erb-a erythroblastic leukemia viral oncogene homolog 3 (ErbB3), ErbB4, E74-like factor 3 (ELF3), and chemokine ligand 17 (CXCL17). The down-regulated genes included signal transducer and activator transcription 5B (STAT5b), transforming growth factor A receptor III (TGFA3), caveolin 1 (CAV1), and protein kinase C alpha (PKCA). The gene set enrichment analysis showed 10 significant gene sets with related genes (P < 0.05). The quantitative polymerase chain reaction of 4 selected genes using similar RNA confirmed the microarray results (P < 0.05).
CONCLUSIONS: Identification of molecular pathways with their genes related to type I EC contribute to the understanding of pathophysiology of this cancer, probably leading to identifying potential biomarkers of the cancer.