Displaying all 3 publications

Abstract:
Sort:
  1. Souza AA, Ducker C, Argaw D, King JD, Solomon AW, Biamonte MA, et al.
    Trans R Soc Trop Med Hyg, 2021 01 28;115(2):129-135.
    PMID: 33169166 DOI: 10.1093/trstmh/traa118
    Accurate and reliable diagnostic tools are an essential requirement for neglected tropical diseases (NTDs) programmes. However, the NTD community has historically underinvested in the development and improvement of diagnostic tools, potentially undermining the successes achieved over the last 2 decades. Recognizing this, the WHO, in its newly released draft roadmap for NTD 2021-2030, has identified diagnostics as one of four priority areas requiring concerted action to reach the 2030 targets. As a result, WHO established a Diagnostics Technical Advisory Group (DTAG) to serve as the collaborative mechanism to drive progress in this area. Here, the purpose and role of the DTAG are described in the context of the challenges facing NTD programmes.
  2. Won KY, Gass K, Biamonte M, Dagne DA, Ducker C, Hanna C, et al.
    PLoS Negl Trop Dis, 2021 11;15(11):e0009968.
    PMID: 34780503 DOI: 10.1371/journal.pntd.0009968
    As lymphatic filariasis (LF) programs move closer to established targets for validation elimination of LF as a public health problem, diagnostic tools capable of supporting the needs of the programs are critical for success. Known limitations of existing diagnostic tools make it challenging to have confidence that program endpoints have been achieved. In 2019, the World Health Organization (WHO) established a Diagnostic Technical Advisory Group (DTAG) for Neglected Tropical Diseases tasked with prioritizing diagnostic needs including defining use-cases and target product profiles (TPPs) for needed tools. Subsequently, disease-specific DTAG subgroups, including one focused on LF, were established to develop TPPs and use-case analyses to be used by product developers. Here, we describe the development of two priority TPPs for LF diagnostics needed for making decisions for stopping mass drug administration (MDA) of a triple drug regimen and surveillance. Utilizing the WHO core TPP development process as the framework, the LF subgroup convened to discuss and determine attributes required for each use case. TPPs considered the following parameters: product use, design, performance, product configuration and cost, and access and equity. Version 1.0 TPPs for two use cases were published by WHO on 12 March 2021 within the WHO Global Observatory on Health Research and Development. A common TPP characteristic that emerged in both use cases was the need to identify new biomarkers that would allow for greater precision in program delivery. As LF diagnostic tests are rarely used for individual clinical diagnosis, it became apparent that reliance on population-based surveys for decision making requires consideration of test performance in the context of such surveys. In low prevalence settings, the number of false positive test results may lead to unnecessary continuation or resumption of MDA, thus wasting valuable resources and time. Therefore, highly specific diagnostic tools are paramount when used to measure low thresholds. The TPP process brought to the forefront the importance of linking use case, program platform and diagnostic performance characteristics when defining required criteria for diagnostic tools.
  3. Cools P, van Lieshout L, Koelewijn R, Addiss D, Ajjampur SSR, Ayana M, et al.
    PLoS Negl Trop Dis, 2020 Jun;14(6):e0008231.
    PMID: 32544158 DOI: 10.1371/journal.pntd.0008231
    BACKGROUND: Nucleic acid amplification tests (NAATs) are increasingly being used as diagnostic tools for soil-transmitted helminths (STHs; Ascaris lumbricoides, Trichuris trichiura, Necator americanus, Ancylostoma duodenale and A. ceylanicum), Strongyloides stercoralis and Schistosoma in human stool. Currently, there is a large diversity of NAATs being applied, but an external quality assessment scheme (EQAS) for these diagnostics is lacking. An EQAS involves a blinded process where test results reported by a laboratory are compared to those reported by reference or expert laboratories, allowing for an objective assessment of the diagnostic performance of a laboratory. In the current study, we piloted an international EQAS for these helminths (i) to investigate the feasibility of designing and delivering an EQAS; (ii) to assess the diagnostic performance of laboratories; and (iii) to gain insights into the different NAAT protocols used.

    METHODS AND PRINCIPAL FINDINGS: A panel of twelve stool samples and eight DNA samples was validated by six expert laboratories for the presence of six helminths (Ascaris, Trichuris, N. americanus, Ancylostoma, Strongyloides and Schistosoma). Subsequently this panel was sent to 15 globally dispersed laboratories. We found a high degree of diversity among the different DNA extraction and NAAT protocols. Although most laboratories performed well, we could clearly identify the laboratories that were poorly performing.

    CONCLUSIONS/SIGNIFICANCE: We showed the technical feasibility of an international EQAS for the NAAT of STHs, Strongyloides and Schistosoma. In addition, we documented that there are clear benefits for participating laboratories, as they can confirm and/or improve the diagnostic performance of their NAATs. Further research should aim to identify factors that explain poor performance of NAATs.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links