Displaying all 2 publications

Abstract:
Sort:
  1. Nor Ashikin Rahman, Noor Azilah Muda, Norashikin Ahmad
    MyJurnal
    Combining Mel Frequency Cepstral Coefficient with wavelet transform for feature extraction is not new. This paper proposes a new architecture to help in increasing the accuracy of speaker recognition compared with conventional architecture. In conventional speaker model, the voice will undergo noise elimination first before feature extraction. The proposed architecture however, will extract the features and eliminate noise simultaneously. The MFCC is used to extract the voice features while wavelet de-noising technique is used to eliminate the noise contained in the speech signals. Thus, the new architecture achieves two outcomes in one single process: ex-tracting voice feature and elimination of noise.
  2. Rehman MA, Abd Rahman N, Ibrahim ANH, Kamal NA, Ahmad A
    Heliyon, 2024 Apr 15;10(7):e28854.
    PMID: 38576554 DOI: 10.1016/j.heliyon.2024.e28854
    Soil erodibility (K) is an essential component in estimating soil loss indicating the soil's susceptibility to detach and transport. Data Computing and processing methods, such as artificial neural networks (ANNs) and multiple linear regression (MLR), have proven to be helpful in the development of predictive models for natural hazards. The present case study aims to assess the efficiency of MLR and ANN models to forecast soil erodibility in Peninsular Malaysia. A total of 103 samples were collected from various sites and K values were calculated using the Tew equation developed for Malaysian soil. From several extracted parameters, the outcomes of correlation and principal component analysis (PCA) revealed the influencing factors to be used in the development of ANN and MLR models. Based on the correlation and PCA results, two sets of influencing factors were employed to develop predictive models. Two MLR (MLR-1 and MLR-2) models and four neural networks (NN-1, NN-2, NN-3, and NN-4) optimized using Levenberg-Marquardt (LM) and scaled conjugate gradient (SCG) were developed and evaluated. The model performance validation was conducted using the coefficient of determination (R2), mean squared error (MSE), root mean squared error (RMSE), and Nash-Sutcliffe efficiency coefficient (NSE). The analysis showed that ANN models outperformed MLR models. The R2 values of 0.446 (MLR-1), 0.430 (MLR-2), 0.894 (NN-1), 0.855 (NN-2), 0.940 (NN-3), and 0.826 (NN-4); MSE values of 0.0000306 (MLR-1), 0.0000315 (MLR-2), 0.0000158 (NN-1), 0.0000261 (NN-2), 0.0000318 (NN-3), and 0.0000216 (NN-4) suggested the higher accuracy and lower modelling error of ANN models as compared with MLR. This study could provide an empirical basis and methodological support for K factor estimation in the region.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links