Displaying all 3 publications

  1. Fulazzaky MA, Nuid M, Aris A, Muda K
    Environ Technol, 2018 Sep;39(17):2151-2161.
    PMID: 28675960 DOI: 10.1080/09593330.2017.1351494
    Understanding of mass transfer kinetics is important for biosorption of nitrogen compounds from palm oil mill effluent (POME) to gain a mechanistic insight into future biological processes for the treatment of high organic loading wastewater. In this study, the rates of global and sequential mass transfer were determined using the modified mass transfer factor equations for the experiments to remove nitrogen by aerobic granular sludge accumulation in a sequencing batch reactor (SBR). The maximum efficiencies as high as 97% for the experiment run at [kLa]g value of 1421.8 h-1 and 96% for the experiment run at [kLa]g value of 9.6 × 1037 h-1 were verified before and after the addition of Serratia marcescens SA30, respectively. The resistance of mass transfer could be dependent on external mass transfer that controls the transport of nitrogen molecule along the experimental period of 256 days. The increase in [kLa]g value leading to increased performance of the SBR was verified to contribute to the future applications of the SBR because this phenomenon provides new insight into the dynamic response of biological processes to treat POME.
  2. Nuid M, Aris A, Abdullah S, Fulazzaky MA, Muda K
    J Environ Manage, 2023 Sep 01;341:118032.
    PMID: 37163834 DOI: 10.1016/j.jenvman.2023.118032
    Biogranulation technology is an emerging biological process in treating various wastewater. However, the development of biogranules requires an extended period of time when treating wastewaters with high oil and grease (O&G) content. A study was therefore conducted to assess the formation of biogranules through bioaugmentation with the Serratia marcescens SA30 strain, in treating real anaerobically digested palm oil mill effluent (AD-POME), with O&G of about 4600 mg/L. The biogranules were developed in a lab-scale sequencing batch reactor (SBR) system under alternating anaerobic and aerobic conditions. The experimental data were assessed using the modified mass transfer factor (MMTF) models to understand the mechanisms of biosorption of O&G on the biogranules. The system was run with variable organic loading rates (OLR) of 0.69-9.90 kg/m3d and superficial air velocity (SAV) of 2 cm/s. After 60 days of being bioaugmented with the Serratia marcescens SA30 strain, the flocculent biomass transformed into biogranules with excellent settleability with improved treatment efficiency. The biogranules showed a compact structure and good settling ability with an average diameter of about 2 mm, a sludge volume index at 5 min (SVI5) of 43 mL/g, and a settling velocity (SV) of 81 m/h after 256 days of operation. The average removal efficiencies of O&G increased from 6 to 99.92%, respectively. The application of the MMTF model verified that the resistance to O&G biosorption is controlled via film mass transfer. This research indicates successful bioaugmentation of biogranules using the Serratia marcescens SA30 strain for enhanced biodegradation of O&G and is capable to treat real AD-POME.
  3. Nuid M, Aris A, Krishnen R, Chelliapan S, Muda K
    J Environ Manage, 2023 Oct 15;344:118501.
    PMID: 37418913 DOI: 10.1016/j.jenvman.2023.118501
    This study was to develop biogranules using a sequencing batch reactor (SBR) and to evaluate the effect of pineapple wastewater (PW) as a co-substrate for treating real textile wastewater (RTW). The biogranular system cycle was 24 h (2 stages of phase), with an anaerobic phase (17.8 h) followed by an aerobic phase (5.8 h) for every stage of the phase. The concentration of pineapple wastewater was the main factor studied in influencing COD and color removal efficiency. Pineapple wastewater with different concentrations (7, 5, 4, 3, and 0% v/v) makes a total volume of 3 L and causes the OLRs to vary from 2.90 to 0.23 kg COD/m3day. The system achieved 55% of average color removal and 88% of average COD removal at 7%v/v PW concentration during treatment. With the addition of PW, the removal increased significantly. The experiment on the treatment of RTW without any added nutrients proved the importance of co-substrate in dye degradation.
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links