Composite based on spear grass with low density polyethylene (LDPE)/soya spent powder (SSP) were prepared by using
twin screw extruder at 150o
C. The spear grass (SG) loading was ranged from 0 to 15%. A compatibilizer, epoxidized
natural rubber (ENR 50) with 50 mol % epoxidation was added. The effect of filler content and compatibilizer on the
properties of LDPE/ SSP composite was studied. The results indicated that the increase of SG loading leads to the reduction
of tensile strength and elongation at break (Eb
), whereas the Young’s modulus has increased. Differential scanning
calorimeter (DSC), indicated that the melting temperature and crystallinity of the composites decreased with the increase
of SG loading. After the addition of ENR 50, the melting temperature increases from 98.33 to 98.63o
C for 95% LDPE, 5%
SSP and 5% SG, whereas the crystallinity of the same ratio decreased from 31.92 to 28.13%.
The massive destruction and loss caused by the 2004 Sumatra-Andaman tsunami were attributed to the lack of knowledge on tsunami and low regional detection and communication systems for early warning in that region. This study aimed to identify locations at risk of impending tsunami from Andaman Sea for the safety of community and proper development planning at the coastal areas by providing an updated and revised inundation maps. The last study on this area was conducted several years ago which open the possibility to new findings. Generated by tsunami simulation models, the maps illustrate the extent and level of inundation to which the coastal community and infrastructure would be subjected. As a result of coastal changes and availability of better topographic data, the existing inundation maps for the coastal areas of northwest Peninsular Malaysia at risk to impending tsunami from the Andaman Sea are revised. This paper documented the computational setup leading to the generation of the revised inundation maps. The tsunami simulation model TUNA was used to simulate the generation, propagation, and subsequent run-up and inundation of tsunamis triggered by earthquakes of moment magnitudes (Mw) 8.5, 9.0, and 9.25 along the Sunda Trench. From the simulations, it was found that at Mw 9.25, Balik Pulau, Pulau Pinang would be subjected to inundation of as far as 3.47 km with 5.40-m-deep inundation at the highest section.
Rhodococci are renowned for their great metabolic repertoire partly because of their numerous putative pathways for large number of specialized metabolites such as biosurfactant. Screening and genome-based assessment for the capacity to produce surface-active molecules was conducted on Rhodococcus sp. ADL36, a diesel-degrading Antarctic bacterium. The strain showed a positive bacterial adhesion to hydrocarbon (BATH) assay, drop collapse test, oil displacement activity, microplate assay, maximal emulsification index at 45% and ability to reduce water surface tension to < 30 mN/m. The evaluation of the cell-free supernatant demonstrated its high stability across the temperature, pH and salinity gradient although no correlation was found between the surface and emulsification activity. Based on the positive relationship between the assessment of macromolecules content and infrared analysis, the extracted biosurfactant synthesized was classified as a lipopeptide. Prediction of the secondary metabolites in the non-ribosomal peptide synthetase (NRPS) clusters suggested the likelihood of the surface-active lipopeptide production in the strain's genomic data. This is the third report of surface-active lipopeptide producers from this phylotype and the first from the polar region. The lipopeptide synthesized by ADL36 has the prospect to be an Antarctic remediation tool while furnishing a distinctive natural product for biotechnological application and research.