Displaying all 7 publications

Abstract:
Sort:
  1. Shiek Ahmad B, Wark JD, Petty SJ, O'Brien TJ, Gorelik A, Sambrook PN, et al.
    Epilepsia, 2015 Nov;56(11):1714-22.
    PMID: 26513212 DOI: 10.1111/epi.13136
    To investigate cross-sectional and longitudinal differences in static and dynamic standing balance measures and lower limb muscle strength in patients who are treated chronically with antiepileptic drugs (AEDs).
  2. Paudel YN, Angelopoulou E, Jones NC, O'Brien TJ, Kwan P, Piperi C, et al.
    ACS Chem Neurosci, 2019 10 16;10(10):4199-4212.
    PMID: 31532186 DOI: 10.1021/acschemneuro.9b00460
    Emerging findings point toward an important interconnection between epilepsy and Alzheimer's disease (AD) pathogenesis. Patients with epilepsy (PWE) commonly exhibit cognitive impairment similar to AD patients, who in turn are at a higher risk of developing epilepsy compared to age-matched controls. To date, no disease-modifying treatment strategy is available for either epilepsy or AD, reflecting an immediate need for exploring common molecular targets, which can delineate a possible mechanistic link between epilepsy and AD. This review attempts to disentangle the interconnectivity between epilepsy and AD pathogenesis via the crucial contribution of Tau protein. Tau protein is a microtubule-associated protein (MAP) that has been implicated in the pathophysiology of both epilepsy and AD. Hyperphosphorylation of Tau contributes to the different forms of human epilepsy and inhibition of the same exerted seizure inhibitions and altered disease progression in a range of animal models. Moreover, Tau-protein-mediated therapy has demonstrated promising outcomes in experimental models of AD. In this review, we discuss how Tau-related mechanisms might present a link between the cause of seizures in epilepsy and cognitive disruption in AD. Untangling this interconnection might be instrumental in designing novel therapies that can minimize epileptic seizures and cognitive deficits in patients with epilepsy and AD.
  3. Arulsamy A, Tan QY, Balasubramaniam V, O'Brien TJ, Shaikh MF
    ACS Chem Neurosci, 2020 Nov 04;11(21):3488-3498.
    PMID: 33064448 DOI: 10.1021/acschemneuro.0c00431
    Dysbiosis of gut microbiota may lead to a range of diseases including neurological disorders. Thus, it is hypothesized that regulation of the intestinal microbiota may prevent or treat epilepsy. The purpose of this systematic review is to evaluate the evidence investigating the relationship between gut microbiota and epilepsy and possible interventions. A systematic review of the literature was done on four databases (PubMed, Scopus, EMBASE, and Web of Science). Study selection was restricted to original research articles while following the PRISMA guidelines. Six studies were selected. These studies cohesively support the interaction between gut microbiota and epileptic seizures. Gut microbiota analysis identified increases in Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria with decreases in Bacteroidetes and Actinobacteria in epileptic patients. Ketogenic diet, probiotics, and fecal microbiota transplantation (FMT) improved the dysbiosis of the gut microbiota and seizure activity. However, the studies either had a small sample size, lack of subject variability, or short study or follow-up period, which may question their reliability. Nevertheless, these limited studies conclusively suggest that gut microbiota diversity and dysbiosis may be involved in the pathology of epilepsy. Future studies providing more reliable and in depth insight into the gut microbial community will spark promising alternative therapies to current epilepsy treatment.
  4. Shiek Ahmad B, O'Brien TJ, Gorelik A, Hill KD, Wark JD
    J Clin Densitom, 2016 Oct;19(4):450-456.
    PMID: 27553750 DOI: 10.1016/j.jocd.2016.07.008
    Antiepileptic drug (AED) therapy is associated with decreased bone mineral density; however, the time course for this development is unclear. The aim of this study was to evaluate bone mineral changes during the initial years of AED therapy in AED-naive, newly diagnosed epilepsy patients compared with non-AED users. In 49 epilepsy patients newly started on AEDs and in 53 non-AED users of both genders, bone mineral density (BMD) and bone mineral content were measured using dual-energy X-ray absorptiometry at baseline (within the first year of therapy) and at least 1 yr later. Bone changes between the 2 assessments, adjusted for age, height, and weight, were calculated as the annual rate of change. The median duration of AED therapy was 3.5 mo at baseline and 27.6 mo at follow-up. No overall difference was found in mean BMD and bone mineral content measures between user and nonuser cohorts in both cross-sectional baseline and the annual rate of change (p > 0.05). However, users on carbamazepine monotherapy (n = 11) had an increased annual rate of total hip (-2.1% vs -0.8%, p = 0.020) and femoral neck BMD loss (-2.1% vs -0.6%, p = 0.032) compared to nonusers. They also had a marginally higher rate of femoral neck BMD loss (-2.1%, p = 0.049) compared with valproate (-0.1%, n = 13) and levetiracetam users (+0.6%, n = 13). During the initial years of AED treatment for epilepsy, no difference was found in bone measures between AED users as a group and nonuser cohorts. However, the data suggested that carbamazepine monotherapy was associated with increased bone loss at the hip regions, compared to users of levetiracetam or valproate and nonusers. Larger studies of longer duration are warranted to better delineate the bone effects of specific AEDs, with further consideration of the role of early dual-energy X-ray absorptiometry scanning and careful AED selection in potentially minimizing the impact on bone health in these patients.
  5. Shiek Ahmad B, Petty SJ, Gorelik A, O'Brien TJ, Hill KD, Christie JJ, et al.
    Osteoporos Int, 2017 Sep;28(9):2591-2600.
    PMID: 28589417 DOI: 10.1007/s00198-017-4098-9
    Changes in areal bone mineral density (aBMD) and other predictors of bone loss were evaluated in 48 same-sex twin/age-matched sibling pairs discordant for antiepileptic drug (AED) use. AED users had reduced BMD at the hip regions. Prolonged AED users had greater aBMD loss, predicting a higher risk of bone fragility.

    INTRODUCTION: To investigate the longitudinal associations of bone mineral measures with antiepileptic drug (AED) use, including enzyme-inducing (EIAED) and non-enzyme-inducing (NEIAED) types, and other predictors of bone loss in a study of 48 same-sex twin/age-matched sibling pairs (40 female, 8 male) discordant for AED use.

    METHODS: Using dual-energy X-ray absorptiometry (DXA), areal bone mineral density (aBMD) and content (BMC) at the hip regions, forearm, lumbar spine, and whole body were measured twice, at least 2 years apart. The mean within-pair difference (MWPD), MWPD%, and mean annual rate of aBMD change were adjusted for age, weight, and height. Predictors of bone loss were evaluated.

    RESULTS: AED users, compared to non-users, at baseline and follow-up, respectively, had reduced aBMD at the total hip (MWPD% 3.8, 4.4%), femoral neck (4.7, 4.5%), and trochanter regions (4.1, 4.6%) (p  0.05) regions did not differ within pairs. Nevertheless, EIAED users had greater aBMD loss than non-users (n = 20 pairs) at the total hip (1.7 vs. 0.3%, p = 0.013) and whole body regions (0.7% loss vs. 0.1% BMD gain, p = 0.019), which was not found in NEIAED-discordant pairs (n = 16). AED use >20 years predicted higher aBMD loss at the forearm (p = 0.028), whole body (p = 0.010), and whole body BMC (p = 0.031).

    CONCLUSIONS: AED users had reduced aBMD at the hip regions. Prolonged users and EIAED users had greater aBMD loss, predicting a higher risk of bone fragility. Further prospective studies of AED effects on bone microarchitecture are needed.

  6. Liew Y, Retinasamy T, Arulsamy A, Ali I, Jones NC, O'Brien TJ, et al.
    J Alzheimers Dis, 2023;94(s1):S253-S265.
    PMID: 37092226 DOI: 10.3233/JAD-230059
    BACKGROUND: Neuroinflammation is an innate immunological response of the central nervous system that may be induced by a brain insult and chronic neurodegenerative conditions. Recent research has shown that neuroinflammation may contribute to the initiation of Alzheimer's disease (AD) pathogenesis and associated epileptogenesis.

    OBJECTIVE: This systematic review aimed to investigate the available literature on the shared molecular mechanisms of neuroinflammation in AD and epilepsy.

    METHODS: The search included in this systematic review was obtained from 5 established databases. A total of 2,760 articles were screened according to inclusion criteria. Articles related to the modulation of the inflammatory biomarkers commonly associated with the progression of AD and epilepsy in all populations were included in this review.

    RESULTS: Only 7 articles met these criteria and were chosen for further analysis. Selected studies include both in vitro and in vivo research conducted on rodents. Several neuroinflammatory biomarkers were reported to be involved in the cross-talk between AD and epilepsy.

    CONCLUSION: Neuroinflammation was directly associated with the advancement of AD and epilepsy in populations compared to those with either AD or epilepsy. However, more studies focusing on common inflammatory biomarkers are required to develop standardized monitoring guidelines to prevent the manifestation of epilepsy and delay the progression of AD in patients.

  7. Saida K, Maroofian R, Sengoku T, Mitani T, Pagnamenta AT, Marafi D, et al.
    Genet Med, 2023 Jan;25(1):90-102.
    PMID: 36318270 DOI: 10.1016/j.gim.2022.09.010
    PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants.

    METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies.

    RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities.

    CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links