Displaying all 20 publications

Abstract:
Sort:
  1. Abu Bakar ZH, Damanhuri HA, Makpol S, Wan Kamaruddin WMA, Abdul Sani NF, Amir Hamzah AIZ, et al.
    J Alzheimers Dis, 2019;70(s1):S43-S62.
    PMID: 30594926 DOI: 10.3233/JAD-180511
    BACKGROUND: Many studies on biochemical and psychological variables have aimed to elucidate the association between aging and cognitive function. Demographic differences and protein expression have been reported to play a role in determining the cognitive capability of a population.

    OBJECTIVE: This study aimed to determine the effect of age on the protein profile of Malay individuals and its association with cognitive competency.

    METHODS: A total of 160 individuals were recruited and grouped accordingly. Cognitive competency of each subject was assessed with several neuropsychological tests. Plasma samples were collected and analyzed with Q Exactive HF Orbitrap. Proteins were identified and quantitated with MaxQuant and further analyzed with Perseus to determine differentially expressed proteins. PANTHER, Reactome, and STRING were applied for bioinformatics output.

    RESULTS: Our data showed that the Malay individuals are vulnerable to the deterioration of cognitive function with aging, and most of the proteins were differentially expressed in concordance. Several physiological components and pathways were shown to be involved, giving a hint of a promising interpretation on the induction of aging toward the state of the Malays' cognitive function. Nevertheless, some proteins have shown a considerable interaction with the generated protein network, which provides a direction of focus for further investigation.

    CONCLUSION: This study demonstrated notable changes in the expression of several proteins as age increased. These changes provide a promising platform for understanding the biochemical factors affecting cognitive function in the Malay population. The exhibited network of protein-protein interaction suggests the possibility of implementing regulatory intervention in ameliorating Malay cognitive function.

  2. Wan Nasri WN, Makpol S, Mazlan M, Tooyama I, Wan Ngah WZ, Damanhuri HA
    J Alzheimers Dis, 2019;70(s1):S239-S254.
    PMID: 30507571 DOI: 10.3233/JAD-180496
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive abilities. AD is associated with aggregation of amyloid-β (Aβ) deposited in the hippocampal brain region. Our previous work has shown that tocotrienol rich fraction (TRF) supplementation was able to attenuate the blood oxidative status, improve behavior, and reduce fibrillary-type Aβ deposition in the hippocampus of an AD mouse model. In the present study, we investigate the effect of 6 months of TRF supplementation on transcriptome profile in the hippocampus of APPswe/PS1dE9 double transgenic mice. TRF supplementation can alleviate AD conditions by modulating several important genes in AD. Moreover, TRF supplementation attenuated the affected biological process and pathways that were upregulated in the AD mouse model. Our findings indicate that TRF supplementation can modulate hippocampal gene expression as well as biological processes that can potentially delay the progression of AD.
  3. Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Makpol S, et al.
    J Alzheimers Dis, 2019;72(1):229-246.
    PMID: 31594216 DOI: 10.3233/JAD-181171
    Tocotrienol-rich fraction (TRF) is a mixture of vitamin E analogs derived from palm oil. We previously demonstrated that supplementation with TRF improved cognitive function and modulated amyloid pathology in AβPP/PS1 mice brains. The current study was designed to examine proteomic profiles underlying the therapeutic effect of TRF in the brain. Proteomic analyses were performed on samples of hippocampus, medial prefrontal cortex (mPFC), and striatum using liquid chromatography coupled to Q Exactive HF Orbitrap mass spectrometry. From these analyses, we profiled a total of 5,847 proteins of which 155 proteins were differentially expressed between AβPP/PS1 and wild-type mice. TRF supplementation of these mice altered the expression of 255 proteins in the hippocampus, mPFC, and striatum. TRF also negatively modulated the expression of amyloid beta A4 protein and receptor-type tyrosine-protein phosphatase alpha protein in the hippocampus. The expression of proteins in metabolic pathways, oxidative phosphorylation, and those involved in Alzheimer's disease were altered in the brains of AβPP/PS1 mice that received TRF supplementation.
  4. Tan CH, Hilal S, Xu X, Vrooman H, Cheng CY, Wong TY, et al.
    J Alzheimers Dis, 2020;73(4):1501-1509.
    PMID: 31958085 DOI: 10.3233/JAD-190866
    There is a need to elucidate the combined influence of neurodegeneration and cerebrovascular disease (CeVD) on cognitive impairment, especially in diverse populations. Here, we evaluated 840 multiethnic individuals (mean age = 70.18) across the disease spectrum from the Epidemiology of Dementia in Singapore study. First, we determined whether a validated quantitative MRI score of mixed pathology is associated with clinical diagnosis and whether the score differed between ethnicities (Chinese, Malays, and Indians). We then evaluated whether the score was associated with multidomain cognitive impairment and if additional measures of CeVD were further associated with cognitive impairment. We found that lower quantitative MRI scores were associated with severity of clinical diagnosis and Chinese individuals had the highest quantitative MRI scores, followed by Indians and Malays. Lower quantitative MRI scores were also associated with lower performance in attention, language, visuoconstruction, visuomotor, visual, and verbal memory domains. Lastly, the presence of intracranial stenosis and cortical cerebral microinfarcts, but not cerebral microbleeds, were associated with memory performance beyond quantitative MRI scores. Taken together, our results demonstrate the utility of using multiple MRI markers of neurodegeneration and CeVD for identifying multiethnic Asians with the greatest cognitive impairment due to mixed pathology.
  5. McGrattan AM, Zhu Y, Richardson CD, Mohan D, Soh YC, Sajjad A, et al.
    J Alzheimers Dis, 2021;79(2):743-762.
    PMID: 33361599 DOI: 10.3233/JAD-201043
    BACKGROUND: Mild cognitive impairment (MCI) is a cognitive state associated with increased risk of dementia. Little research on MCI exists from low-and middle-income countries (LMICs), despite high prevalence of dementia in these settings.

    OBJECTIVE: This systematic review aimed to review epidemiological reports to determine the prevalence of MCI and its associated risk factors in LMICs.

    METHODS: Medline, Embase, and PsycINFO were searched from inception until November 2019. Eligible articles reported on MCI in population or community-based studies from LMICs and were included as long as MCI was clearly defined.

    RESULTS: 5,568 articles were screened, and 78 retained. In total, n = 23 different LMICs were represented; mostly from China (n = 55 studies). Few studies were from countries defined as lower-middle income (n = 14), low income (n = 4), or from population representative samples (n = 4). There was large heterogeneity in how MCI was diagnosed; with Petersen criteria the most commonly applied (n = 26). Prevalence of amnesic MCI (aMCI) (Petersen criteria) ranged from 0.6%to 22.3%. Similar variability existed across studies using the International Working Group Criteria for aMCI (range 4.5%to 18.3%) and all-MCI (range 6.1%to 30.4%). Risk of MCI was associated with demographic (e.g., age), health (e.g., cardio-metabolic disease), and lifestyle (e.g., social isolation, smoking, diet and physical activity) factors.

    CONCLUSION: Outside of China, few MCI studies have been conducted in LMIC settings. There is an urgent need for population representative epidemiological studies to determine MCI prevalence in LMICs. MCI diagnostic methodology also needs to be standardized. This will allow for cross-study comparison and future resource planning.

  6. Mohan D, Yap KH, Reidpath D, Soh YC, McGrattan A, Stephan BCM, et al.
    J Alzheimers Dis, 2020;76(4):1347-1373.
    PMID: 32675410 DOI: 10.3233/JAD-191339
    BACKGROUND: A key focus for dementia risk-reduction is the prevention of socio-demographic, lifestyle, and nutritional risk factors. High sodium intake is associated with hypertension and cardiovascular disease (both are linked to dementia), generating numerous recommendations for salt reduction to improve cardiovascular health.

    OBJECTIVE: This systematic review aimed to assess, in middle- and older-aged people, the relationship between dietary sodium intake and cognitive outcomes including cognitive function, risk of cognitive decline, or dementia.

    METHODS: Six databases (PubMed, EMBASE, CINAHL, Psych info, Web of Science, and Cochrane Library) were searched from inception to 1 March 2020. Data extraction included information on study design, population characteristics, sodium reduction strategy (trials) or assessment of dietary sodium intake (observational studies), measurement of cognitive function or dementia, and summary of main results. Risk-of-bias assessments were performed using the National Heart, Lung, and Blood Institute (NHLBI) assessment tool.

    RESULTS: Fifteen studies met the inclusion criteria including one clinical trial, six cohorts, and eight cross-sectional studies. Studies reported mixed associations between sodium levels and cognition. Results from the only clinical trial showed that a lower sodium intake was associated with improved cognition over six months. In analysis restricted to only high-quality studies, three out of four studies found that higher sodium intake was associated with impaired cognitive function.

    CONCLUSION: There is some evidence that high salt intake is associated with poor cognition. However, findings are mixed, likely due to poor methodological quality, and heterogeneous dietary, analytical, and cognitive assessment methods and design of the studies. Reduced sodium intake may be a potential target for intervention. High quality prospective studies and clinical trials are needed.

  7. Ponvel P, Shahar S, Singh DKA, Ludin AFM, Rajikan R, Rajab NF, et al.
    J Alzheimers Dis, 2021;82(2):673-687.
    PMID: 34092633 DOI: 10.3233/JAD-201607
    BACKGROUND: Cognitive frailty (CF) is identified as one of the main precursors of dementia. Multidomain intervention has been found to delay or prevent the onset of CF.

    OBJECTIVE: The aim of our present study is to determine the effectiveness of a comprehensive, multidomain intervention on CF; to evaluate its cost effectiveness and the factors influencing adherence toward this intensive intervention.

    METHODS: A total of 1,000 community dwelling older adults, aged 60 years and above will be screened for CF. This randomized controlled trial involves recruitment of 330 older adults with CF from urban, semi-urban, and rural areas in Malaysia. Multidomain intervention comprised of physical, nutritional, cognitive, and psychosocial aspects will be provided to participants in the experimental group (n = 165). The control group (n = 165) will continue their usual care with their physician. Primary outcomes include CF status, physical function, psychosocial and nutritional status as well as cognitive performance. Vascular health and gut microbiome will be assessed using blood and stool samples. A 24-month intensive intervention will be prescribed to the participants and its sustainability will be assessed for the following 12 months. The effective intervention strategies will be integrated as a personalized telerehabilitation package for the reversal of CF for future use.

    RESULTS: The multidomain intervention developed from this trial is expected to be cost effective compared to usual care as well as able is to reverse CF.

    CONCLUSION: This project will be part of the World-Wide FINGERS (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability) Network, of which common identifiable data will be shared and harmonized among the consortia.

  8. Walker JD, Spiro G, Loewen K, Jacklin K
    J Alzheimers Dis, 2020;78(4):1439-1451.
    PMID: 33185601 DOI: 10.3233/JAD-200704
    BACKGROUND: There remains a lack of information and understanding of the prevalence and incidence of Alzheimer's disease and related dementia in Indigenous populations. Little evidence available suggests that Indigenous peoples may have disproportionately high rates of Alzheimer's disease and related dementia (ADRD).

    OBJECTIVE: Given this information, this study systematically explores what risk factors may be associated with ADRD in Indigenous populations.

    METHODS: A search of all published literature was conducted in October 2016, March 2018, and July 2019 using Medline, Embase, and PsychINFO. Subject headings explored were inclusive of all terms related to Indigenous persons, dementia, and risk. All relevant words, phrases, and combinations were used. To be included in this systematic review, articles had to display an association of a risk factor and ADRD. Only studies that reported a quantifiable measure of risk, involved human subjects, and were published in English were included.

    RESULTS: Of 237 articles originally identified through database searches, 45 were duplicates and 179 did not meet a priori inclusion criteria, resulting in 13 studies eligible for inclusion in this systematic review.

    CONCLUSION: The large number of potentially modifiable risk factors reported relative to non-modifiable risk factors illustrates the importance of socioeconomic context in the pathogenesis of ADRD in Indigenous populations. The tendency to prioritize genetic over social explanations when encountering disproportionately high disease rates in Indigenous populations can distract from modifiable proximal, intermediate, and distal determinants of health.

  9. Ibrahim NF, Yanagisawa D, Durani LW, Hamezah HS, Damanhuri HA, Wan Ngah WZ, et al.
    J Alzheimers Dis, 2017;55(2):597-612.
    PMID: 27716672
    Alzheimer's disease (AD) is the most common cause of dementia. The cardinal neuropathological characteristic of AD is the accumulation of amyloid-β (Aβ) into extracellular plaques that ultimately disrupt neuronal function and lead to neurodegeneration. One possible therapeutic strategy therefore is to prevent Aβ aggregation. Previous studies have suggested that vitamin E analogs slow AD progression in humans. In the present study, we investigated the effects of the tocotrienol-rich fraction (TRF), a mixture of vitamin E analogs from palm oil, on amyloid pathology in vitro and in vivo. TRF treatment dose-dependently inhibited the formation of Aβ fibrils and Aβ oligomers in vitro. Moreover, daily TRF supplementation to AβPPswe/PS1dE9 double transgenic mice for 10 months attenuated Aβ immunoreactive depositions and thioflavin-S-positive fibrillar type plaques in the brain, and eventually improved cognitive function in the novel object recognition test compared with control AβPPswe/PS1dE9 mice. The present result indicates that TRF reduced amyloid pathology and improved cognitive functions, and suggests that TRF is a potential therapeutic agent for AD.
  10. Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Nasaruddin ML, Mori M, et al.
    J Alzheimers Dis, 2018;64(1):249-267.
    PMID: 29889072 DOI: 10.3233/JAD-170880
    We have recently shown that the tocotrienol-rich fraction (TRF) of palm oil, a mixture of vitamin E analogs, improves amyloid pathology in vitro and in vivo. However, precise mechanisms remain unknown. In this study, we examined the effects of long-term (10 months) TRF treatment on behavioral impairments and brain metabolites in (15 months old) AβPP/PS1 double transgenic (Tg) Alzheimer's disease (AD) mice. The open field test, Morris water maze, and novel object recognition tasks revealed improved exploratory activity, spatial learning, and recognition memory, respectively, in TRF-treated Tg mice. Brain metabolite profiling of wild-type and Tg mice treated with and without TRF was performed using ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution accurate mass (HRAM)-orbitrap tandem mass spectrometry (MS/MS). Metabolic pathway analysis found perturbed metabolic pathways that linked to AD. TRF treatment partly ameliorated metabolic perturbations in Tg mouse hippocampus. The mechanism of this pre-emptive activity may occur via modulation of metabolic pathways dependent on Aβ interaction or independent of Aβ interaction.
  11. Vanoh D, Shahar S, Razali R, Ali NM, Manaf ZA, Mohd Noah SA, et al.
    J Alzheimers Dis, 2019;70(s1):S255-S270.
    PMID: 31256116 DOI: 10.3233/JAD-180464
    BACKGROUND: Intervention strategies, especially online based approaches, are considered to be beneficial in improving the health of the senior. The effectiveness of such approaches is yet to be determined.

    OBJECTIVE: This study aims to determine the effectiveness of the web-based application, WESIHAT 2.0©, for improving cognitive function, physical fitness, biochemical indices, and psychosocial variables among older adults in Klang Valley, Malaysia. The cost analysis of WESIHAT 2.0© was also determined.

    METHOD: The study utilized a two-arm randomized controlled trial with 25 subjects in each of the intervention and control groups. The participants chosen for the study included those who were 60 years and above with at least secondary education and had internet access using a computer at home. The intervention group was exposed to the website (30 minutes per day, 4 days per week) for six months, while the control group was given health education pamphlets. Activity-Based Costing method was used to determine the cost saved using WESIHAT 2.0© as compared to using the pamphlet.

    RESULTS: Significant intervention effects were observed for self-perception of disability and informational support scores. WESIHAT 2.0© was able to save costs in improving the self-perception of disability score and the informational support score at MYR 6.92 and MYR 13.52, respectively, compared to the conventional method.

    CONCLUSION: WESIHAT 2.0© was able to save costs in improving the self-perceived disability and informational support scores for the intervention group.

  12. Yemm H, Robinson DL, Paddick SM, Dotchin C, Goodson ML, Narytnyk A, et al.
    J Alzheimers Dis, 2021;83(1):451-474.
    PMID: 34334407 DOI: 10.3233/JAD-210532
    BACKGROUND: The largest proportion of people with dementia worldwide live in low- and middle- income countries (LMICs), with dementia prevalence continuing to rise. Assessment and diagnosis of dementia involves identifying the impact of cognitive decline on function, usually measured by instrumental activities of daily living (IADLs).

    OBJECTIVE: This review aimed to identify IADL measures which are specifically developed, validated, or adapted for use in LMICs to guide selection of such tools.

    METHODS: A systematic search was conducted (fourteen databases) up to April 2020. Only studies reporting on development, validation, or adaptation of IADL measures for dementia or cognitive impairment among older adults (aged over 50) in LMICs were included. The QUADAS 2 was used to assess quality of diagnostic accuracy studies.

    RESULTS: 22 papers met inclusion criteria; identifying 19 discrete IADL tools across 11 LMICs. These were either translated from IADL measures used in high-income countries (n = 6), translated and adapted for cultural differences (n = 6), or newly developed for target LMIC populations (n = 7). Seven measures were investigated in multiple studies; overall quality of diagnostic accuracy was moderate to good.

    CONCLUSION: Reliability, validity, and accuracy of IADL measures for supporting dementia diagnosis within LMICs was reported. Key components to consider when selecting an IADL tool for such settings were highlighted, including choosing culturally appropriate, time-efficient tools that account for gender- and literacy-bias, and can be conducted by any volunteer with appropriate training. There is a need for greater technical and external validation of IADL tools across different regions, countries, populations, and cultures.

  13. Matsuzaki Tada A, Hamezah HS, Pahrudin Arrozi A, Abu Bakar ZH, Yanagisawa D, Tooyama I
    J Alzheimers Dis, 2022;89(3):835-848.
    PMID: 35964178 DOI: 10.3233/JAD-220192
    BACKGROUND: Tripeptide Met-Lys-Pro (MKP), a component of casein hydrolysates, has effective angiotensin-converting enzyme (ACE) inhibitory activity. Brain angiotensin II enzyme activates the NADPH oxidase complex via angiotensin II receptor type 1 (AT1) and enhances oxidative stress injury. ACE inhibitors improved cognitive function in Alzheimer's disease (AD) mouse models and previous clinical trials. Thus, although undetermined, MKP may be effective against pathological amyloid-β (Aβ) accumulation-induced cognitive impairment.

    OBJECTIVE: The current study aimed to investigate the potential of MKP as a pharmaceutical against AD by examining MKP's effect on cognitive function and molecular changes in the brain using double transgenic (APP/PS1) mice.

    METHODS: Experimental procedures were conducted in APP/PS1 mice (n = 38) with a C57BL/6 background. A novel object recognition test was used to evaluate recognition memory. ELISA was used to measure insoluble Aβ40, Aβ42, and TNF-α levels in brain tissue. Immunohistochemical analysis allowed the assessment of glial cell activation in MKP-treated APP/PS1 mice.

    RESULTS: The novel object recognition test revealed that MKP-treated APP/PS1 mice showed significant improvement in recognition memory. ELISA of brain tissue showed that MKP significantly reduced insoluble Aβ40, Aβ42, and TNF-α levels. Immunohistochemical analysis indicated the suppression of the marker for microglia and reactive astrocytes in MKP-treated APP/PS1 mice.

    CONCLUSION: Based on these results, we consider that MKP could ameliorate pathological Aβ accumulation-induced cognitive impairment in APP/PS1 mice. Furthermore, our findings suggest that MKP potentially contributes to preventing cognitive decline in AD.

  14. Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z
    J Alzheimers Dis, 2023;91(2):507-530.
    PMID: 36502321 DOI: 10.3233/JAD-220666
    The aging population increases steadily because of a healthy lifestyle and medical advancements in healthcare. However, Alzheimer's disease (AD) is becoming more common and problematic among older adults. AD-related cases show an increasing trend annually, and the younger age population may also be at risk of developing this disorder. AD constitutes a primary form of dementia, an irreversible and progressive brain disorder that steadily damages cognitive functions and the ability to perform daily tasks. Later in life, AD leads to death as a result of the degeneration of specific brain areas. Currently, the cause of AD is poorly understood, and there is no safe and effective therapeutic agent to cure or slow down its progression. The condition is entirely preventable, and no study has yet demonstrated encouraging findings in terms of treatment. Identifying this disease's pathophysiology can help researchers develop safe and efficient therapeutic strategies to treat this ailment. This review outlines and discusses the pathophysiology that resulted in the development of AD including amyloid-β plaques, tau neurofibrillary tangles, neuroinflammation, oxidative stress, cholinergic dysfunction, glutamate excitotoxicity, and changes in neurotrophins level may sound better based on the literature search from Scopus, PubMed, ScienceDirect, and Google Scholar. Potential therapeutic strategies are discussed to provide more insights into AD mechanisms by developing some possible pharmacological agents for its treatment.
  15. Brook ES, D'Alonzo ZJ, Lam V, Chan DC, Dhaliwal SS, Watts GF, et al.
    J Alzheimers Dis, 2023;93(2):653-664.
    PMID: 37066906 DOI: 10.3233/JAD-220529
    BACKGROUND: Obesity is linked to a higher incidence of Alzheimer's disease (AD). Studies show that plasma amyloid-β (Aβ) dyshomeostasis, particularly low 42/40 ratio indicates a heightened risk for developing AD. However, the relationship between body mass index (BMI) and circulating plasma Aβ has not been extensively studied.

    OBJECTIVE: We hypothesized that people with a high BMI have altered plasma Aβ homeostasis compared with people with a lower BMI. We also tested whether reducing BMI by calorie-restriction could normalize plasma concentrations of Aβ.

    METHODS: Plasma concentrations of Aβ40, Aβ42, and Aβ42/40 ratio were measured in 106 participants with BMIs classified as lean, overweight, or obese. From this cohort, twelve participants with overweight or obese BMIs entered a 12-week calorie-restriction weight loss program. We then tested whether decreasing BMI affected plasma Aβ concentrations.

    RESULTS: Plasma Aβ42/40 ratio was 17.54% lower in participants with an obese BMI compared to lean participants (p 

  16. Hui BSM, Zhi LR, Retinasamy T, Arulsamy A, Law CSW, Shaikh MF, et al.
    J Alzheimers Dis, 2023;94(s1):S45-S66.
    PMID: 36776068 DOI: 10.3233/JAD-221081
    BACKGROUND: Neurodegenerative diseases (NDs) impose significant financial and healthcare burden on populations all over the world. The prevalence and incidence of NDs have been observed to increase dramatically with age. Hence, the number of reported cases is projected to increase in the future, as life spans continues to rise. Despite this, there is limited effective treatment against most NDs. Interferons (IFNs), a family of cytokines, have been suggested as a promising therapeutic target for NDs, particularly IFN-α, which governs various pathological pathways in different NDs.

    OBJECTIVE: This systematic review aimed to critically appraise the currently available literature on the pathological role of IFN-α in neurodegeneration/NDs.

    METHODS: Three databases, Scopus, PubMed, and Ovid Medline, were utilized for the literature search.

    RESULTS: A total of 77 journal articles were selected for critical evaluation, based on the inclusion and exclusion criteria. The studies selected and elucidated in this current systematic review have showed that IFN-α may play a deleterious role in neurodegenerative diseases through its strong association with the inflammatory processes resulting in mainly neurocognitive impairments. IFN-α may be displaying its neurotoxic function via various mechanisms such as abnormal calcium mineralization, activation of STAT1-dependent mechanisms, and increased quinolinic acid production.

    CONCLUSION: The exact role IFN-α in these neurodegenerative diseases have yet to be determine due to a lack in more recent evidence, thereby creating a variability in the role of IFN-α. Future investigations should thus be conducted, so that the role played by IFN-α in neurodegenerative diseases could be delineated.

  17. Mansor NI, Ling KH, Rosli R, Hassan Z, Adenan MI, Nordin N
    J Alzheimers Dis, 2023;94(s1):S21-S44.
    PMID: 37334592 DOI: 10.3233/JAD-221233
    BACKGROUND: Centella asiatica (L.) (C. asiatica) is commonly known in South East and South East Asia communities for its nutritional and medicinal benefits. Besides being traditionally used to enhance memory and accelerate wound healing, its phytochemicals have been extensively documented for their neuroprotective, neuroregenerative, and antioxidant properties.

    OBJECTIVE: The present study aims to investigate the effects of a standardized raw extract of C. asiatica (RECA) on hydrogen peroxide (H2O2)-induced oxidative stress and apoptotic death in neural-like cells derived from mouse embryonic stem (ES) cell line.

    METHODS: A transgenic mouse ES cell (46C) was differentiated into neural-like cells using 4-/4+ protocol with addition of all-trans retinoic acid. These cells were then exposed to H2O2 for 24 h. The effects of RECA on H2O2-induced neural-like cells were assessed through cell viability, apoptosis, and reactive oxygen species (ROS) assays, as well as neurite length measurement. The gene expression levels of neuronal-specific and antioxidant markers were assessed by RT-qPCR analysis.

    RESULTS: Pre-treatment with H2O2 for 24 hours, in a dose-dependent manner, damaged neural-like cells as marked by a decrease in cell viability, substantial increase in intracellular ROS accumulation, and increase in apoptotic rate compared to untreated cells. These cells were used to treat with RECA. Treatment with RECA for 48 h remarkably restored cell survival and promoted neurite outgrowth in the H2O2- damaged neurons by increasing cell viability and decreasing ROS activity. RT-qPCR analysis revealed that RECA upregulated the level of antioxidant genes such as thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO-1) of treated cells, as well as the expression level of neuronal-specific markers such as Tuj1 and MAP2 genes, suggesting their contribution in neuritogenic effect.

    CONCLUSION: Our findings indicate that RECA promotes neuroregenerative effects and exhibits antioxidant properties, suggesting a valuable synergistic activity of its phytochemical constituents, thus, making the extract a promising candidate in preventing or treating oxidative stress-associated Alzheimer's disease.

  18. Liew Y, Retinasamy T, Arulsamy A, Ali I, Jones NC, O'Brien TJ, et al.
    J Alzheimers Dis, 2023;94(s1):S253-S265.
    PMID: 37092226 DOI: 10.3233/JAD-230059
    BACKGROUND: Neuroinflammation is an innate immunological response of the central nervous system that may be induced by a brain insult and chronic neurodegenerative conditions. Recent research has shown that neuroinflammation may contribute to the initiation of Alzheimer's disease (AD) pathogenesis and associated epileptogenesis.

    OBJECTIVE: This systematic review aimed to investigate the available literature on the shared molecular mechanisms of neuroinflammation in AD and epilepsy.

    METHODS: The search included in this systematic review was obtained from 5 established databases. A total of 2,760 articles were screened according to inclusion criteria. Articles related to the modulation of the inflammatory biomarkers commonly associated with the progression of AD and epilepsy in all populations were included in this review.

    RESULTS: Only 7 articles met these criteria and were chosen for further analysis. Selected studies include both in vitro and in vivo research conducted on rodents. Several neuroinflammatory biomarkers were reported to be involved in the cross-talk between AD and epilepsy.

    CONCLUSION: Neuroinflammation was directly associated with the advancement of AD and epilepsy in populations compared to those with either AD or epilepsy. However, more studies focusing on common inflammatory biomarkers are required to develop standardized monitoring guidelines to prevent the manifestation of epilepsy and delay the progression of AD in patients.

  19. Hambali A, Jusril NA, Md Hashim NF, Abd Manan N, Adam SK, Mehat MZ, et al.
    J Alzheimers Dis, 2024;99(s1):S119-S138.
    PMID: 38250772 DOI: 10.3233/JAD-230875
    BACKGROUND: Neuroinflammation and oxidative stress can aggravate the progression of Alzheimer's disease (AD). Centella asiatica has been traditionally consumed for memory and cognition. The triterpenes (asiaticoside, madecassoside, asiatic acid, madecassic acid) have been standardized in the ethanolic extract of Centella asiatica (SECA). The bioactivity of the triterpenes in different solvent polarities of SECA is still unknown.

    OBJECTIVE: In this study, the antioxidative and anti-neuroinflammatory effects of SECA and its fractions were explored on lipopolysaccharides (LPS)-induced microglial cells.

    METHODS: HPLC measured the four triterpenes in SECA and its fractions. SECA and its fractions were tested for cytotoxicity on microglial cells using MTT assay. NO, pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), ROS, and MDA (lipid peroxidation) produced by LPS-induced microglial cells were measured by colorimetric assays and ELISA. Nrf2 and HO-1 protein expressions were measured using western blotting.

    RESULTS: The SECA and its fractions were non-toxic to BV2 microglial cells at tested concentrations. The levels of NO, TNF-α, IL-6, ROS, and lipid peroxidation in LPS-induced BV2 microglial cells were significantly reduced (p 

  20. Anstey KJ, Peters R, Zheng L, Barnes DE, Brayne C, Brodaty H, et al.
    J Alzheimers Dis, 2020;78(1):3-12.
    PMID: 32925063 DOI: 10.3233/JAD-200674
    In the past decade a large body of evidence has accumulated on risk factors for dementia, primarily from Europe and North America. Drawing on recent integrative reviews and a consensus workshop, the International Research Network on Dementia Prevention developed a consensus statement on priorities for future research. Significant gaps in geographical location, representativeness, diversity, duration, mechanisms, and research on combinations of risk factors were identified. Future research to inform dementia risk reduction should fill gaps in the evidence base, take a life-course, multi-domain approach, and inform population health approaches that improve the brain-health of whole communities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links