Displaying all 4 publications

Abstract:
Sort:
  1. Iqbal M, Okazaki Y, Okada S
    Mol Cell Biochem, 2009 Apr;324(1-2):157-64.
    PMID: 19165575 DOI: 10.1007/s11010-008-9994-z
    Curcumin (diferuloylmethane), a biologically active ingredient derived from rhizome of the plant Curcuma longa, has potent anticancer properties as demonstrated in a plethora of human cancer cell lines/animal carcinogenesis model and also acts as a biological response modifier in various disorders. We have reported previously that dietary supplementation of curcumin suppresses renal ornithine decarboxylase (Okazaki et al. Biochim Biophys Acta 1740:357-366, 2005) and enhances activities of antioxidant and phase II metabolizing enzymes in mice (Iqbal et al. Pharmacol Toxicol 92:33-38, 2003) and also inhibits Fe-NTA-induced oxidative injury of lipids and DNA in vitro (Iqbal et al. Teratog Carcinog Mutagen 1:151-160, 2003). This study was designed to examine whether curcumin possess the potential to suppress the oxidative damage caused by kidney-specific carcinogen, Fe-NTA, in animals. In accord with previous report, at 1 h after Fe-NTA treatment (9.0 mg Fe/kg body weight intraperitoneally), a substantial increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts in renal proximal tubules of animals was observed. Likewise, the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and protein reactive carbonyl, an indicator of protein oxidation, were also increased at 1 h after Fe-NTA treatment in the kidneys of animals. The prophylactic feeding of animals with 1.0% curcumin in diet for 4 weeks completely abolished the formation of (i) HNE-modified protein adducts, (ii) 8-OHdG, and (iii) protein reactive carbonyl in the kidneys of Fe-NTA-treated animals. Taken together, our results suggest that curcumin may afford substantial protection against oxidative damage caused by Fe-NTA, and these protective effects may be mediated via its antioxidant properties. These properties of curcumin strongly suggest that it could be used as a cancer chemopreventive agent.
  2. Iqbal M, Okazaki Y, Okada S
    Mol Cell Biochem, 2007 Oct;304(1-2):61-9.
    PMID: 17487455
    Probucol is a clinically used cholesterol-lowering drug, with pronounced antioxidant properties. We have reported previously, that dietary supplementation of probucol enhances NAD(P)H:quinone reductase (Iqbal M, Okada S (2003) Pharmacol Toxicol 93:259-263) and inhibits Fe-NTA induced lipid peroxidation and DNA damage in vitro (Iqbal M, Sharma SD, Oakada (2004) Redox Rep 9:167-172). Further to this, in the present study, we evaluated the modulatory effect of probucol on iron nitrilotriacetae (Fe-NTA) dependent renal carcinogenesis, hyperproliferative response and oxidative stress. In Fe-NTA alone treated group, a 20% renal cell tumor incidence was recorded whereas, in N-diethylnitrosamine (DEN)-initiated and Fe-NTA promoted animals, the percentage tumor incidence was increased to 70% as compared with untreated controls. No tumor incidence was recorded in DEN-initiated, nonpromoted group. Diet supplemented with 1.0% probucol fed prior to, during and after Fe-NTA treatment in DEN-initiated animals afforded >65% protection in renal cell tumor incidence. Probucol fed diet pretreatment also resulted a significant and dose dependent inhibition of Fe-NTA induced renal ornithine decarboxylase (ODC) activity. In oxidative stress studies, Fe-NTA alone treatment enhanced lipid peroxidation, accompanied by a decrease in the level of GSH, activities of antioxidants and phase II metabolizing enzymes in kidney concomitant with histolopathological changes. These changes were significantly and dose-dependently alleviated by probucol fed diet. From this data, it can be concluded that probucol can modulates toxic and tumor promoting effects of Fe-NTA and can serve as a potent chemopreventive agent to suppress oxidant induced tissue injury and carcinogenesis, in addition to being a cholesterol lowering and anti-atherogenic drug.
  3. Iqbal M, Shah MD, Vun-Sang S, Okazaki Y, Okada S
    Biomed Pharmacother, 2021 Jul;139:111636.
    PMID: 33957566 DOI: 10.1016/j.biopha.2021.111636
    This study was designed to reveal the protective effects of dietary supplementation of curcumin against renal cell tumours and oxidative stress induced by renal carcinogen iron nitrilotriacetate (Fe-NTA) in ddY male mice. The results showed that mice treated with a renal carcinogen, Fe-NTA, a 35% renal cell tumour incidence was noticed, whereas renal cell tumour occurrence was elevated to 80% in Fe-NTA promoted and N-diethylnitrosamine (DEN)-initiated mice as compared with saline- treated mice. No incidence of tumours has been observed in DEN-initiated non-promoted mice. Diet complemented with 0.5% and 1.0% curcumin fed prior to, during and after treatment with Fe-NTA in DEN-initiated animals, tumour incidence was reduced dose-dependently to about 45% and 30% respectively. Immunohistochemical studies also revealed the increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in kidney tissue of mice treated with an intraperitoneal injection of Fe-NTA (6.0 mg Fe/kg body weight.). Furthermore, Fe-NTA treatment of mice also resulted in significant elevation of malondialdehyde (MDA), serum urea, and creatinine and decreases renal glutathione. However, the changes in most of these parameters were attenuated dose-dependently by prophylactic treatment of animals with 0.5% and 1% curcumin diet, this may be due to its antioxidative impact of curcumin. These results suggest that intake of curcumin is beneficial for the prevention of renal cell tumours and oxidative stress damage mediated by renal carcinogen, Fe-NTA.
  4. Matsuguma Y, Takada H, Kumata H, Kanke H, Sakurai S, Suzuki T, et al.
    Arch Environ Contam Toxicol, 2017 Aug;73(2):230-239.
    PMID: 28534067 DOI: 10.1007/s00244-017-0414-9
    Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links