Displaying all 3 publications

Abstract:
Sort:
  1. Omar, A.R.
    ASM Science Journal, 2011;5(1):71-72.
    MyJurnal
    The government’s science and technology (S&T) apparatus is now in active consultation to formulate the third national S&T policy (NSTP3) and I have been involved in some of these meetings and have benefitted from them. In an earlier article (New Straits Times, 9 July 2011, p. 18) I had briefly described the two previous policies and given some thought on what the essentials of the NSTP3 should be. I am now offering some further thoughts on the subject. (Copied from article).
  2. Hoong, L.W., Yasmin, A.R., Mummoorthy, K., Arshad, S.S., Omar, A.R., Anand, P., et al.
    Jurnal Veterinar Malaysia, 2019;31(2):13-18.
    MyJurnal
    Feline coronavirus (FCoV) infection is a very common in cat population. FCoV is further classified into two biotypes namely feline enteric coronavirus (FECV) and mutated feline infectious peritonitis virus (FIPV), in which FIPV causes a fatal immune complex disease by changing the tropism from enterocytes to monocytes. Previous studies on molecular detection of FCoV in cats were carried out in catteries but limited study investigate the presence of FCoV antigen in local pet cats. By considering this fact, this study aims to detect FCoV antigen via RT-PCR assay in local pet cats and to compare the similarity of the identified FCoV strain with previous related virus by phylogenetic analysis. By using convenience sampling, rectal swabs and buffy coat were collected from 16 clinically ill pet cats and 5 healthy pet cats. Viral RNA was extracted and subjected to one-step RT-PCR, targeting polymerase gene. Only one out of 21 fecal samples was positive for FCoV and none from buffy coat samples. Phylogenetic analysis revealed that the identified positive sample was highly homologous, up to 95%, to FCoV strain from Netherlands and South Korea on partial sequence of polymerase gene. In conclusion, this study detected FCoV antigen in local pet cats from fecal samples while negative detection from fecal and buffy coat samples could not completely rule out the possibilities of FCoV infection due to the complexity of the virus diagnosis that require multiple series of analysis.
  3. Hassan, M.D., Hazeri, M., Omar, A.R., Abba, Y., Allaudin, Z.N., Soltani, M., et al.
    Jurnal Veterinar Malaysia, 2017;29(1):1-6.
    MyJurnal
    Grouper Iriovirus (GIV) is one of the most devastating viral diseases of marine and cultured groupers worldwide. In the current study, 5 presumptive Malaysian GIV isolates were characterised through PCR amplification of the major capsid protein (MCP) gene and phylogenetic analysis of the sequences. The sequences from the five GIV isolates showed 100% homology with each other and a close relationship with grouper iridovirus isolate (GIV_Tn_352), which was clustered in group 1 together with King grouper iridovirus isolate (KGIV_Cy_346), Singapore grouper iridovirus (SGIV), and Crimson snapper iridovirus isolate (CSIV). The phylogenetic tree also showed different degree of relatedness with other Ranavirus strains which were obtained from the blast of GIV MCP gene in the NCBI database. This study confirmed the GIV isolates from Malaysia are related to other isolates that were reported previously.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links