Displaying all 2 publications

Abstract:
Sort:
  1. Johari J, Sharifudin MA, Ab Rahman A, Omar AS, Abdullah AT, Nor S, et al.
    Singapore Med J, 2016 Jan;57(1):33-8.
    PMID: 26831315 DOI: 10.11622/smedj.2016009
    This retrospective review aimed to examine the relationship between preoperative pulmonary function and the Cobb angle, location of apical vertebrae and age in adolescent idiopathic scoliosis (AIS). To our knowledge, there have been no detailed analyses of preoperative pulmonary function in relation to these three factors in AIS.
  2. Abdallah EM, Modwi A, Al-Mijalli SH, Mohammed AE, Idriss H, Omar AS, et al.
    Molecules, 2022 Nov 28;27(23).
    PMID: 36500402 DOI: 10.3390/molecules27238309
    In this work, ZnO, CrZnO, RuZnO, and BaZnO nanomaterials were synthesized and characterized in order to study their antibacterial activity. The agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were used to determine the antibacterial activity of the fabricated nanomaterials against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC35218, Klebsiella pneumoniae ATCC 7000603, and Pseudomonas aeruginosa ATCC 278533. The well-diffusion test revealed significant antibacterial activity against all investigated bacteria when compared to vancomycin at a concentration of 1 mg/mL. The most susceptible bacteria to BaZnO, RuZnO, and CrZnO were Staphylococcus aureus (15.5 ± 0.5 mm), Pseudomonas aeruginosa (19.2 ± 0.5 mm), and Pseudomonas aeruginosa (19.7 ± 0.5), respectively. The MIC values indicated that they were in the range of 0.02 to 0.2 mg/mL. The MBC values showed that the tested bacteria's growth could be inhibited at concentrations ranging from 0.2 to 2.0 mg/mL. According to the MBC/MIC ratio, BaZnO, RuZnO, and CrZnO exhibit bacteriostatic effects and may target bacterial protein synthesis based on the results of the tolerance test. This study shows the efficacy of the above-mentioned nanoparticles on bacterial growth. Further biotechnological and toxicological studies on the nanoparticles fabricated here are recommended to benefit from these findings.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links