The full-length genomes of two DENV-1 viruses isolated during the 2005-2006 dengue incidents in Brunei were sequenced. Twenty five primer sets were designed to amplify contiguous overlapping fragments of approximately 500-600 base pairs spanning the entire sequence of the genome. The amplified PCR products were sent to a commercial laboratory for sequencing and the nucleotides and the deduced amino acids were determined. Sequence analysis of the envelope gene at the nucleotide and amino acid levels between the two isolates showed 92 and 96 % identity, respectively. Comparison of the envelope gene sequences with 68 other DENV-1 viruses of known genotypes placed the two isolates into two different genotypic groups. Isolate DS06/210505 belongs to genotype V together with some of the recent isolates from India (2003) and older isolates from Singapore (1990) and Burma (1976), while isolate DS212/110306 was clustered in genotype IV with the prototype Nauru strain (1974) and with some of the recent isolates from Indonesia (2004) and the Philippines (2002, 2001). In the full-length genome analysis at the nucleotide level, isolate DS06/210505 showed 94 % identity to the French Guyana strain (1989) in genotype V while isolate DS212/110306 had 96 % identity to the Nauru Island strain (1974) in genotype IV. This work constitutes the first complete genetic characterization of not only Brunei DENV-1 virus isolates, but also the first strain from Borneo Island. This study was the first to report the isolation of dengue virus in the country.
In a previous study, we have reported the detection and isolation of dengue virus in Brunei (Osman, O., Fong, M.Y., Devi, S., 2007. A preliminary study of dengue infection in Brunei. JJID 60 (4), 205-208). DEN-2 was the predominant serotype followed by DEN-1. The full genomic sequences of 3 DEN-2 viruses isolated during the 2005-2006 dengue incident in Brunei were determined. Twenty-five primer sets were designed to amplify contiguous overlapping fragments of approximately 500-600 base pairs spanning the entire sequence of the viral genome. The amplified PCR products were sent for sequencing and their nucleotides and the deduced amino acids were determined. All three DEN-2 virus isolated were clustered in the Cosmopolitan genotype of the DEN-2 classification by Twiddy et al. This work constitutes the first complete genetic characterization of three Brunei DEN-2 virus strains.
The purpose of this study was to examine the extent of dengue infection in Brunei and to determine the predominant serotype circulating in the country. The study generated useful epidemiological data on dengue infection in Brunei. A total of 271 samples from patients suspected of having dengue infections were selected and analyzed. All patients were seen in clinics and hospitals in Brunei. The samples were collected from April 2005 to April 2006 and transported to the WHO Collaborating Centre for Arbovirus Reference and Research, University of Malaya, Malaysia. The following tests were used to achieve the objectives: in-house IgM-capture enzyme-linked immunosorbent assay, virus isolation in mosquito albopictus cell line (C6/36), and viral RNA detection and serotyping by reverse transcriptase-polymerase chain reaction (RT-PCR). The results show that 45 people were positive for dengue-specific IgM (27 males and 18 females), while RT-PCR detected dengue viral RNA in 12 patients, 3 identified as DEN-1 and 9 as DEN-2. Dengue virus was isolated from 6 patients using the C6/36 cell line; 3 were DEN-2 isolates and 3 were DEN-1 isolates. These data show that dengue virus is circulating in Brunei and the predominant infecting serotype for that period was DEN-2 followed by DEN-1. This study is the first to report the detection and isolation of dengue virus from Brunei using RT-PCR and culture in the C6/36 albopictus mosquito cell line.
A preliminary study of dengue infection in Brunei between 2005 and 2006 showed that dengue 2 was the predominant serotype. A total of five DEN-2 isolates were isolated and maintained in the mosquito cell-line, albopictus C6/36. The sequence spanning the envelope and non-structural protein 1 (E/NS1) junction (positions 2311 to 2550) of the isolates were determined and analysed at the amino acid and nucleotide levels. Alignment of the 240 nucleotide sequences among the five isolates showed changes occurring at 7 positions (2.9%) of the region. All but one nucleotide substitution (position 2319, amino acid 742 V --> F) were found at the 3rd position of the codons and were silent mutations. Amino acid homology ranged from 98% to 100%. Sequence divergence of the Brunei isolates varied from 5% to 6.6% compared with dengue-2 prototype New Guinea C strain. Comparison of the Brunei DEN-2 isolates with sixty-five other strains placed them in a cluster containing Indonesian strains isolated in 1973, 1978 and 2004 and Malaysian strains isolated in 1996, 1998 and 1999 in genotype group IV.
Diarylidenecyclopentanone compound namely, 2,5-bis[4-choloroacetyl-(thiophen-2-ylmethylene)]cyclopentanone (BCTCP) was firstly synthesized using the normal condition of Friedel-Crafts method by reacting 2,5-bis(thiophen-2-ylmethylene)cyclopentanone (BTCP) with chloroacetyl chloride in the presence of aluminum chloride anhydrous. The structure of this compound was confirmed by elemental and spectral analyses including FT-IR,1H-NMR,13C-NMR and mass spectrometry. The electronic absorption and emission properties of BCTCP were studied in different solvents. BCTCP displays a slight solvatochromic effect of the absorption and emission spectrum, indicating a small change in dipole moment of BCTCP upon excitation. BCTCP displayed photodecomposition in chlorinated solvents upon irradiating with 365 nm light. Ground and excited states electronic geometric optimizations were performed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. A DFT natural bond orbital (NBO) analysis complemented the intramolecular charge transfer (ICT). The simulated maximum absorption and emission wavelengths are in line the observed ones in trend, and were proportionally red-shifted with the increase of the solvent polarity. The stability, hardness and electrophilicity of BCTCP in different solvents were correlated with the polarity of the elected solvents.