Displaying all 5 publications

Abstract:
Sort:
  1. Hong W, Li J, Chang Z, Tan X, Yang H, Ouyang Y, et al.
    J Antibiot (Tokyo), 2017 Jul;70(7):832-844.
    PMID: 28465626 DOI: 10.1038/ja.2017.55
    The emergence of drug resistance in bacterial pathogens is a growing clinical problem that poses difficult challenges in patient management. To exacerbate this problem, there is currently a serious lack of antibacterial agents that are designed to target extremely drug-resistant bacterial strains. Here we describe the design, synthesis and antibacterial testing of a series of 40 novel indole core derivatives, which are predicated by molecular modeling to be potential glycosyltransferase inhibitors. Twenty of these derivatives were found to show in vitro inhibition of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. Four of these strains showed additional activity against Gram-negative bacteria, including extended-spectrum beta-lactamase producing Enterobacteriaceae, imipenem-resistant Klebsiella pneumoniae and multidrug-resistant Acinetobacter baumanii, and against Mycobacterium tuberculosis H37Ra. These four compounds are candidates for developing into broad-spectrum anti-infective agents.
  2. Ouyang Y, Yang H, Zhang P, Wang Y, Kaur S, Zhu X, et al.
    Molecules, 2017 Sep 22;22(10).
    PMID: 28937657 DOI: 10.3390/molecules22101592
    Tuberculosis (TB) is a chronic, potentially fatal disease caused by Mycobacterium tuberculosis (Mtb). The dihyrofolate reductase in Mtb (mt-DHFR) is believed to be an important drug target in anti-TB drug development. This enzyme contains a glycerol (GOL) binding site, which is assumed to be a useful site to improve the selectivity towards human dihyrofolate reductase (h-DHFR). There have been previous attempts to design drugs targeting the GOL binding site, but the designed compounds contain a hydrophilic group, which may prevent the compounds from crossing the cell wall of Mtb to function at the whole cell level. In the current study, we designed and synthesized a series of mt-DHFR inhibitors that contain a 2,4-diaminopyrimidine core with side chains to occupy the glycerol binding site with proper hydrophilicity for cell entry, and tested their anti-tubercular activity against Mtb H37Ra. Among them, compound 16l showed a good anti-TB activity (MIC = 6.25 μg/mL) with a significant selectivity against vero cells. In the molecular simulations performed to understand the binding poses of the compounds, it was noticed that only side chains of a certain size can occupy the glycerol binding site. In summary, the novel synthesized compounds with appropriate side chains, hydrophobicity and selectivity could be important lead compounds for future optimization towards the development of future anti-TB drugs that can be used as monotherapy or in combination with other anti-TB drugs or antibiotics. These compounds can also provide much information for further studies on mt-DHFR. However, the enzyme target of the compounds still needs to be confirmed by pure mt-DHFR binding assays.
  3. Heng HL, Chee CF, Chin SP, Ouyang Y, Wang H, Buckle MJC, et al.
    Medchemcomm, 2018 03 01;9(3):593-594.
    PMID: 30288212 DOI: 10.1039/c8md90012d
    [This corrects the article DOI: 10.1039/C7MD00629B.].
  4. Heng HL, Chee CF, Chin SP, Ouyang Y, Wang H, Buckle MJC, et al.
    Medchemcomm, 2018 Mar 01;9(3):576-582.
    PMID: 30108948 DOI: 10.1039/c7md00629b
    In this study, the (S)-enantiomers of the aporphine alkaloids, nuciferine and roemerine, were prepared via a synthetic route involving catalytic asymmetric hydrogenation and both stereoisomers were evaluated in vitro for functional activity at human 5-HT2 and adrenergic α1 receptor subtypes using a transforming growth factor-α shedding assay. Both enantiomers of each of the compounds were found to act as antagonists at 5-HT2 and α1 receptors. (R)-roemerine was the most potent compound at 5-HT2A and 5-HT2C receptors (pKb = 7.8-7.9) with good selectivity compared to (S)-roemerine at these two receptors and compared to its activity at 5-HT2B, α1A, α1B and α1D receptors.
  5. Li Y, Ouyang Y, Wu H, Wang P, Huang Y, Li X, et al.
    Eur J Med Chem, 2022 Jan 15;228:113979.
    PMID: 34802838 DOI: 10.1016/j.ejmech.2021.113979
    The shortage of new antibiotics makes infections caused by gram-negative (G-) bacteria a significant clinical problem. The key enzymes involved in folate biosynthesis represent important targets for drug discovery, and new antifolates with novel mechanisms are urgently needed. By targeting to dihydrofolate reductase (DHFR), a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (PQZ) compounds were designed, and exhibited potent antibacterial activities in vitro, especially against multi-drug resistant G- strains. Multiple experiments indicated that PQZ compounds contain a different molecular mechanism against the typical DHFR inhibitor, trimethoprim (TMP), and the thymidylate synthase (TS) was identified as another potential but a relatively weak target. A significant synergism between the representative compound, OYYF-175, and sulfamethoxazole (SMZ) was observed with a strong cumulative and significantly bactericidal effect at extremely low concentrations (2 μg/mL for SMZ and 0.03 pg/mL for OYYF-175), which could be resulted from the simultaneous inhibition of dihydropteroate synthase (DHPS), DHFR and TS. PQZ compounds exhibited therapeutic effects in a mouse model of intraperitoneal infections caused by Escherichia coli (E. coli). The co-crystal structure of OYYF-175-DHFR was solved and the detailed interactions were provided. The inhibitors reported represent innovative chemical structures with novel molecular mechanism of action, which will benefit the generation of new, efficacious bactericidal compounds.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links