In this work, fillers of waste chicken feather and abundantly available lignocellulose Ceiba Pentandra bark fibers were used as reinforcement with Biopoxy matrix to produce the sustainable composites. The aim of this work was to evaluate the mechanical, thermal, dimensional stability, and morphological performance of waste chicken feather fiber/Ceiba Pentandra bark fiber filler as potential reinforcement in carbon fabric-layered bioepoxy hybrid composites intended for engineering applications. These composites were prepared by a simple, low cost and user-friendly fabrication methods. The mechanical (tensile, flexural, impact, hardness), dimensional stability, thermal stability, and morphological properties of composites were characterized. The Ceiba Pentandra bark fiber filler-reinforced carbon fabric-layered bioepoxy hybrid composites display better mechanical performance compared to chicken feather fiber/Ceiba Pentandra bark fiber reinforced carbon fabrics layered bioepoxy hybrid composites. The Scanning electron micrographs indicated that the composites exhibited good adhesion at the interface of the reinforcement material and matrix system. The thermogravimetric studies revealed that the composites possess multiple degradation steps, however, they are stable up to 300 °C. The thermos-mechanical studies showed good dimensional stability of the composites. Both studied composites display better thermal and mechanical performance compared to neat bioepoxy or non-bioepoxy thermosets and are suitable for semi-structural applications.
Foamed concrete (FC) is a high-quality building material with densities from 300 to 1850 kg/m3, which can have potential use in civil engineering, both as insulation from heat and sound, and for load-bearing structures. However, due to the nature of the cement material and its high porosity, FC is very weak in withstanding tensile loads; therefore, it often cracks in a plastic state, during shrinkage while drying, and also in a solid state. This paper is the first comprehensive review of the use of man-made and natural fibres to produce fibre-reinforced foamed concrete (FRFC). For this purpose, various foaming agents, fibres and other components that can serve as a basis for FRFC are reviewed and discussed in detail. Several factors have been found to affect the mechanical properties of FRFC, namely: fresh and hardened densities, particle size distribution, percentage of pozzolanic material used and volume of chemical foam agent. It was found that the rheological properties of the FRFC mix are influenced by the properties of both fibres and foam; therefore, it is necessary to apply an additional dosage of a foam agent to enhance the adhesion and cohesion between the foam agent and the cementitious filler in comparison with materials without fibres. Various types of fibres allow the reduction of by autogenous shrinkage a factor of 1.2-1.8 and drying shrinkage by a factor of 1.3-1.8. Incorporation of fibres leads to only a slight increase in the compressive strength of foamed concrete; however, it can significantly improve the flexural strength (up to 4 times), tensile strength (up to 3 times) and impact strength (up to 6 times). At the same time, the addition of fibres leads to practically no change in the heat and sound insulation characteristics of foamed concrete and this is basically depended on the type of fibres used such as Nylon and aramid fibres. Thus, FRFC having the presented set of properties has applications in various areas of construction, both in the construction of load-bearing and enclosing structures.
Rapid global infrastructural developments and advanced material science, amongst other factors, have escalated the demand for concrete. Cement, which is an integral part of concrete, binds the various individual solid materials to form a cohesive mass. Its production to a large extent emits many tons of greenhouse gases, with nearly 10% of global carbon (IV) oxide (CO2) emanating from cement production. This, coupled with an increase in the advocacy for environmental sustainability, has led to the development of various innovative solutions and supplementary cementitious materials. These aims to substantially reduce the overall volume of cement required in concrete and to meet the consistently increasing demand for concrete, which is projected to increase as a result of rapid construction and infrastructural development trends. Palm oil fuel ash (POFA), an industrial byproduct that is a result of the incineration of palm oil wastes due to electrical generation in power plants has unique properties, as it is a very reactive materials with robust pozzolanic tendencies, and which exhibits adequate micro-filling capabilities. In this study, a review on the material sources, affecting factors, and durability characteristics of POFA are carefully appraised. Moreover, in this study, a review of correlated literature with a broad spectrum of insights into the likely utilization of POFA-based eco-friendly concrete composites as a green material for the present construction of modern buildings is presented.