Displaying all 11 publications

Abstract:
Sort:
  1. Muazu Musa R, P P Abdul Majeed A, Taha Z, Chang SW, Ab Nasir AF, Abdullah MR
    PLoS One, 2019;14(1):e0209638.
    PMID: 30605456 DOI: 10.1371/journal.pone.0209638
    k-nearest neighbour (k-NN) has been shown to be an effective learning algorithm for classification and prediction. However, the application of k-NN for prediction and classification in specific sport is still in its infancy. The present study classified and predicted high and low potential archers from a set of physical fitness variables trained on a variation of k-NN algorithms and logistic regression. 50 youth archers with the mean age and standard deviation of (17.0 ± 0.56) years drawn from various archery programmes completed a one end archery shooting score test. Standard fitness measurements of the handgrip, vertical jump, standing broad jump, static balance, upper muscle strength and the core muscle strength were conducted. Multiple linear regression was utilised to ascertain the significant variables that affect the shooting score. It was demonstrated from the analysis that core muscle strength and vertical jump were statistically significant. Hierarchical agglomerative cluster analysis (HACA) was used to cluster the archers based on the significant variables identified. k-NN model variations, i.e., fine, medium, coarse, cosine, cubic and weighted functions as well as logistic regression, were trained based on the significant performance variables. The HACA clustered the archers into high potential archers (HPA) and low potential archers (LPA). The weighted k-NN outperformed all the tested models at itdemonstrated reasonably good classification on the evaluated indicators with an accuracy of 82.5 ± 4.75% for the prediction of the HPA and the LPA. Moreover, the performance of the classifiers was further investigated against fresh data, which also indicates the efficacy of the weighted k-NN model. These findings could be valuable to coaches and sports managers to recognise high potential archers from a combination of the selected few physical fitness performance indicators identified which would subsequently save cost, time and energy for a talent identification programme.
  2. Musa RM, Hassan I, Abdullah MR, Azmi MNL, P P Abdul Majeed A, Abu Osman NA
    PMID: 34886410 DOI: 10.3390/ijerph182312686
    The popularity of modern tennis has contributed to the increasing number of participants at both recreational and competitive levels. The influx of numerous tennis participants has resulted in a wave of injury occurrences of different types and magnitudes across both male and female players. Since tennis injury harms both players' economic and career development, a better understanding of its epidemiology could potentially curtail its prevalence and occurrences. We used online-based tennis-related injury reports to study the prevalence, location types, and injury intensities in both male and female tennis players for the past five years. It is demonstrated from the chi-square analysis that injury occurrences are significantly associated with a specific gender (χ2(18) = 50.773; p = 0.001), with male players having a higher risk of injury manifestation (68.10%) as compared with female players (31.90%). Nonetheless, knee, hip, ankle, and shoulder injuries are highly prevalent in both male and female players. Moreover, the injury intensities are distributed across gender (χ2(2) = 0.398; p = 0.820), with major injuries being dominant, followed by minor injuries, whilst a few cases of career-threatening injuries were also reported. It was similarly observed that male players recorded a higher degree of both major, minor, and career-threatening injuries than female players. In addition, male players sustained more elbow, hip, knee, shoulder, and thigh injuries than female players. Whereas, female players mostly suffered from Achilles and back injuries, ankle and hamstring injuries affected both genders. The usage of online newspaper reports is pivotal in characterizing the epidemiology of tennis-related injuries based on locations and gender to better understand the pattern and localization of injuries, which could be used to address the problem of modern tennis-related injuries.
  3. Taha Z, Musa RM, P P Abdul Majeed A, Alim MM, Abdullah MR
    Hum Mov Sci, 2018 Feb;57:184-193.
    PMID: 29248809 DOI: 10.1016/j.humov.2017.12.008
    Support Vector Machine (SVM) has been shown to be an effective learning algorithm for classification and prediction. However, the application of SVM for prediction and classification in specific sport has rarely been used to quantify/discriminate low and high-performance athletes. The present study classified and predicted high and low-potential archers from a set of fitness and motor ability variables trained on different SVMs kernel algorithms. 50 youth archers with the mean age and standard deviation of 17.0 ± 0.6 years drawn from various archery programmes completed a six arrows shooting score test. Standard fitness and ability measurements namely hand grip, vertical jump, standing broad jump, static balance, upper muscle strength and the core muscle strength were also recorded. Hierarchical agglomerative cluster analysis (HACA) was used to cluster the archers based on the performance variables tested. SVM models with linear, quadratic, cubic, fine RBF, medium RBF, as well as the coarse RBF kernel functions, were trained based on the measured performance variables. The HACA clustered the archers into high-potential archers (HPA) and low-potential archers (LPA), respectively. The linear, quadratic, cubic, as well as the medium RBF kernel functions models, demonstrated reasonably excellent classification accuracy of 97.5% and 2.5% error rate for the prediction of the HPA and the LPA. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from a combination of the selected few measured fitness and motor ability performance variables examined which would consequently save cost, time and effort during talent identification programme.
  4. Omar Z, P P Abdul Majeed A, Rosbi M, Ghazalli SA, Selamat H
    Data Brief, 2024 Aug;55:110667.
    PMID: 39071971 DOI: 10.1016/j.dib.2024.110667
    This dataset comprises oil palm fresh fruit bunch (FFB) images that may potentially be used in the study related to fruit ripeness detection via image processing. The FFB dataset was collected from palm oil plantations in Johor, Negeri Sembilan, and Perak, Malaysia. The data collection involved acquiring pictures of FFB from various angles and classifying them based on their ripeness level, categorised into five classes: damaged bunch, empty bunch, unripe, ripe, and overripe. An experienced grader carefully labelled each FFB image with the corresponding ground truth information. The dataset provides valuable insights into the colour variations of FFBs throughout their ripening process, which is essential for assessing oil quality. It includes observations on the external fruit colours as well as characteristics related to the presence of empty sockets in the FFB as a key indicator of ripeness. The reusability potential of this dataset is significant for researchers in the field of oil palm fruit classification and grading, which requires an extensive outdoor dataset that comprise FFB's both on the tree and on the ground. Our work enables the development and validation of machine learning pipelines for outdoor automated FFB grading. Furthermore, the dataset may also support studies to improve oil palm cultivation practices, enhance yield, and optimise oil quality.
  5. Mohd Khairuddin I, Sidek SN, P P Abdul Majeed A, Mohd Razman MA, Ahmad Puzi A, Md Yusof H
    PeerJ Comput Sci, 2021;7:e379.
    PMID: 33817026 DOI: 10.7717/peerj-cs.379
    Electromyography (EMG) signal is one of the extensively utilised biological signals for predicting human motor intention, which is an essential element in human-robot collaboration platforms. Studies on motion intention prediction from EMG signals have often been concentrated on either classification and regression models of muscle activity. In this study, we leverage the information from the EMG signals, to detect the subject's intentions in generating motion commands for a robot-assisted upper limb rehabilitation platform. The EMG signals are recorded from ten healthy subjects' biceps muscle, and the movements of the upper limb evaluated are voluntary elbow flexion and extension along the sagittal plane. The signals are filtered through a fifth-order Butterworth filter. A number of features were extracted from the filtered signals namely waveform length (WL), mean absolute value (MAV), root mean square (RMS), standard deviation (SD), minimum (MIN) and maximum (MAX). Several different classifiers viz. Linear Discriminant Analysis (LDA), Logistic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM) and k-Nearest Neighbour (k-NN) were investigated on its efficacy to accurately classify the pre-intention and intention classes based on the significant features identified (MIN and MAX) via Extremely Randomised Tree feature selection technique. It was observed from the present investigation that the DT classifier yielded an excellent classification with a classification accuracy of 100%, 99% and 99% on training, testing and validation dataset, respectively based on the identified features. The findings of the present investigation are non-trivial towards facilitating the rehabilitation phase of patients based on their actual capability and hence, would eventually yield a more active participation from them.
  6. Rashid M, Bari BS, Hasan MJ, Razman MAM, Musa RM, Ab Nasir AF, et al.
    PeerJ Comput Sci, 2021;7:e374.
    PMID: 33817022 DOI: 10.7717/peerj-cs.374
    Brain-computer interface (BCI) is a viable alternative communication strategy for patients of neurological disorders as it facilitates the translation of human intent into device commands. The performance of BCIs primarily depends on the efficacy of the feature extraction and feature selection techniques, as well as the classification algorithms employed. More often than not, high dimensional feature set contains redundant features that may degrade a given classifier's performance. In the present investigation, an ensemble learning-based classification algorithm, namely random subspace k-nearest neighbour (k-NN) has been proposed to classify the motor imagery (MI) data. The common spatial pattern (CSP) has been applied to extract the features from the MI response, and the effectiveness of random forest (RF)-based feature selection algorithm has also been investigated. In order to evaluate the efficacy of the proposed method, an experimental study has been implemented using four publicly available MI dataset (BCI Competition III dataset 1 (data-1), dataset IIIA (data-2), dataset IVA (data-3) and BCI Competition IV dataset II (data-4)). It was shown that the ensemble-based random subspace k-NN approach achieved the superior classification accuracy (CA) of 99.21%, 93.19%, 93.57% and 90.32% for data-1, data-2, data-3 and data-4, respectively against other models evaluated, namely linear discriminant analysis, support vector machine, random forest, Naïve Bayes and the conventional k-NN. In comparison with other classification approaches reported in the recent studies, the proposed method enhanced the accuracy by 2.09% for data-1, 1.29% for data-2, 4.95% for data-3 and 5.71% for data-4, respectively. Moreover, it is worth highlighting that the RF feature selection technique employed in the present study was able to significantly reduce the feature dimension without compromising the overall CA. The outcome from the present study implies that the proposed method may significantly enhance the accuracy of MI data classification.
  7. Rashid M, Sulaiman N, P P Abdul Majeed A, Musa RM, Ab Nasir AF, Bari BS, et al.
    Front Neurorobot, 2020;14:25.
    PMID: 32581758 DOI: 10.3389/fnbot.2020.00025
    Brain-Computer Interface (BCI), in essence, aims at controlling different assistive devices through the utilization of brain waves. It is worth noting that the application of BCI is not limited to medical applications, and hence, the research in this field has gained due attention. Moreover, the significant number of related publications over the past two decades further indicates the consistent improvements and breakthroughs that have been made in this particular field. Nonetheless, it is also worth mentioning that with these improvements, new challenges are constantly discovered. This article provides a comprehensive review of the state-of-the-art of a complete BCI system. First, a brief overview of electroencephalogram (EEG)-based BCI systems is given. Secondly, a considerable number of popular BCI applications are reviewed in terms of electrophysiological control signals, feature extraction, classification algorithms, and performance evaluation metrics. Finally, the challenges to the recent BCI systems are discussed, and possible solutions to mitigate the issues are recommended.
  8. Muazu Musa R, P P Abdul Majeed A, Abdullah MR, Ab Nasir AF, Arif Hassan MH, Mohd Razman MA
    PLoS One, 2019;14(6):e0219138.
    PMID: 31247012 DOI: 10.1371/journal.pone.0219138
    The present study aims to identify the essential technical and tactical performance indicators that could differentiate winning and losing performance in the Asian elite beach soccer competition. A set of 20 technical and tactical performance indicators namely; shot back-third, shot mid-third, shot front-third, pass back-third, pass mid-third, pass front-third, shot in box, shot outbox, chances created, interception, turnover, goals scored 1st period, goals scored 2nd period, goals scored 3rd period, goals scored extra time, tackling, fouls committed, complete save, incomplete save and passing error were observed during the beach soccer Asian Football Confederation tournament 2017 held in Malaysia. A total of 23 matches from 12 teams were notated using StatWatch application in real-time. Discriminant analysis (DA) of standard, backward as well stepwise modes were used to develop a model for the winning (WT) and losing team (LT) whilst Mann-Whitney U test was utilized to ascertain the differences between the WT and LT with respect to the performance indicators evaluated. The standard backward, forward and stepwise discriminates the WT and the LT with an excellent accuracy of 95.65%, 91.30% and 89.13%, respectively. The standard DA model discriminated the teams from seven performance indicators whilst both the backward and forward stepwise identified two performance indicators. The Mann-Whitney U test analysis indicated that the WT is statistically significant from the LT based on the performance indicators determined from the standard mode model of the DA. It was demonstrated that seven performance indicators namely; shot front-third, pass front-third, chances created, goals scores at the 1st period, goals scored at the 2nd period, goals scored at 3rd period were directly linked to a successful performance whilst the incomplete save by the keeper attribute towards the poor performance of the team. The present finding could serve useful to the coaches as well as performance analysts as a measure of profiling successful performance and enables team improvement with respect to the associated performance indicators.
  9. Islam MN, Sulaiman N, Farid FA, Uddin J, Alyami SA, Rashid M, et al.
    PeerJ Comput Sci, 2021;7:e638.
    PMID: 34712786 DOI: 10.7717/peerj-cs.638
    Hearing deficiency is the world's most common sensation of impairment and impedes human communication and learning. Early and precise hearing diagnosis using electroencephalogram (EEG) is referred to as the optimum strategy to deal with this issue. Among a wide range of EEG control signals, the most relevant modality for hearing loss diagnosis is auditory evoked potential (AEP) which is produced in the brain's cortex area through an auditory stimulus. This study aims to develop a robust intelligent auditory sensation system utilizing a pre-train deep learning framework by analyzing and evaluating the functional reliability of the hearing based on the AEP response. First, the raw AEP data is transformed into time-frequency images through the wavelet transformation. Then, lower-level functionality is eliminated using a pre-trained network. Here, an improved-VGG16 architecture has been designed based on removing some convolutional layers and adding new layers in the fully connected block. Subsequently, the higher levels of the neural network architecture are fine-tuned using the labelled time-frequency images. Finally, the proposed method's performance has been validated by a reputed publicly available AEP dataset, recorded from sixteen subjects when they have heard specific auditory stimuli in the left or right ear. The proposed method outperforms the state-of-art studies by improving the classification accuracy to 96.87% (from 57.375%), which indicates that the proposed improved-VGG16 architecture can significantly deal with AEP response in early hearing loss diagnosis.
  10. Bari BS, Islam MN, Rashid M, Hasan MJ, Razman MAM, Musa RM, et al.
    PeerJ Comput Sci, 2021;7:e432.
    PMID: 33954231 DOI: 10.7717/peerj-cs.432
    The rice leaves related diseases often pose threats to the sustainable production of rice affecting many farmers around the world. Early diagnosis and appropriate remedy of the rice leaf infection is crucial in facilitating healthy growth of the rice plants to ensure adequate supply and food security to the rapidly increasing population. Therefore, machine-driven disease diagnosis systems could mitigate the limitations of the conventional methods for leaf disease diagnosis techniques that is often time-consuming, inaccurate, and expensive. Nowadays, computer-assisted rice leaf disease diagnosis systems are becoming very popular. However, several limitations ranging from strong image backgrounds, vague symptoms' edge, dissimilarity in the image capturing weather, lack of real field rice leaf image data, variation in symptoms from the same infection, multiple infections producing similar symptoms, and lack of efficient real-time system mar the efficacy of the system and its usage. To mitigate the aforesaid problems, a faster region-based convolutional neural network (Faster R-CNN) was employed for the real-time detection of rice leaf diseases in the present research. The Faster R-CNN algorithm introduces advanced RPN architecture that addresses the object location very precisely to generate candidate regions. The robustness of the Faster R-CNN model is enhanced by training the model with publicly available online and own real-field rice leaf datasets. The proposed deep-learning-based approach was observed to be effective in the automatic diagnosis of three discriminative rice leaf diseases including rice blast, brown spot, and hispa with an accuracy of 98.09%, 98.85%, and 99.17% respectively. Moreover, the model was able to identify a healthy rice leaf with an accuracy of 99.25%. The results obtained herein demonstrated that the Faster R-CNN model offers a high-performing rice leaf infection identification system that could diagnose the most common rice diseases more precisely in real-time.
  11. Mahendra Kumar JL, Rashid M, Muazu Musa R, Mohd Razman MA, Sulaiman N, Jailani R, et al.
    PeerJ, 2021;9:e11182.
    PMID: 33850667 DOI: 10.7717/peerj.11182
    Brain Computer-Interface (BCI) technology plays a considerable role in the control of rehabilitation or peripheral devices for stroke patients. This is particularly due to their inability to control such devices from their inherent physical limitations after such an attack. More often than not, the control of such devices exploits electroencephalogram (EEG) signals. Nonetheless, it is worth noting that the extraction of the features and the classification of the signals is non-trivial for a successful BCI system. The use of Transfer Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential features. However, the employment of such a method towards BCI applications, particularly in regard to EEG signals, are somewhat limited. The present study aims to evaluate the effectiveness of different TL models in extracting features for the classification of wink-based EEG signals. The extracted features are classified by means of fine-tuned Random Forest (RF) classifier. The raw EEG signals are transformed into a scalogram image via Continuous Wavelet Transform (CWT) before it was fed into the TL models, namely InceptionV3, Inception ResNetV2, Xception and MobileNet. The dataset was divided into training, validation, and test datasets, respectively, via a stratified ratio of 60:20:20. The hyperparameters of the RF models were optimised through the grid search approach, in which the five-fold cross-validation technique was adopted. The optimised RF classifier performance was compared with the conventional TL-based CNN classifier performance. It was demonstrated from the study that the best TL model identified is the Inception ResNetV2 along with an optimised RF pipeline, as it was able to yield a classification accuracy of 100% on both the training and validation dataset. Therefore, it could be established from the study that a comparable classification efficacy is attainable via the Inception ResNetV2 with an optimised RF pipeline. It is envisaged that the implementation of the proposed architecture to a BCI system would potentially facilitate post-stroke patients to lead a better life quality.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links