The U.S. National Science Foundation-funded (DEB 1022720) 'All Cypriniformes Species Inventory' was initiated in 2010 and will be completed in 2015. It has accelerated the rate of discovery and description of cypriniform fishes, expanded our knowledge of the phylogenetic relationships of cypriniforms, increased the capacity for systematic research in other countries through student training and establishing long-term collaborations, including conferences in Thailand in 2012, Brunei in 2013, Burundi in 2013, and Malaysia in 2014, led to the formation of the Asian Society of Ichthyologists, and made available large numbers of specimens and tissues of freshwater fishes, including many species never before collected, in permanent collections in foreign and U.S. institutions.
Lepidocephalus has been assumed to include only two species and confined to peninsular Malaysia and Indonesia. However, based on records and collections reported herein, the genus contains five species and is most common in the Chao Phraya basin of Thailand. Large rivers seem to be the preferred habitat, and difficulty in collecting these rivers may account for the paucity of specimens in collections. The known range of these five species includes western and southern Borneo, Java, Sumatra, peninsular Malaysia, and central Thailand.
The Asian Society of Ichthyologists (ASI) was established in February 2014 in Penang, Malaysia following organizational meetings in 2012 in Chiang Mai, Thailand and in 2013 in Bandar Seri Begawan, Brunei.
Acantopsis (Cobitidae) is revised based on analysis of morphological and molecular data. Four of the six available names, A. dialuzona, A. spectabilis, A. octoactinotos, and A. thiemmedhi, are valid, and three new species, A. rungthipae, A. dinema, and A. ioa, are described. All species are described morphologically, distributions are mapped, and relationships are discussed for those for which molecular data (CO1, RAG1) are available. Labial barbels, color pattern, and meristic counts are the most diagnostic features. Although the long snout of Acantopsis is perhaps the most emblematic attribute of the genus, its relative length increases with growth, reducing its taxonomic value. Species can be difficult to identify on the basis of color pattern alone, as habitat and preservation methods appear to strongly influence the color pattern. Despite interspecific overlap of some highly variable traits, each species has a unique set of morphological characteristics that remain observable even when the color pattern is obscured, and some species are restricted to single drainages, greatly simplifying identification. The phylogenetic analyses revealed high molecular divergence between even the most morphologically similar species, with mean uncorrected CO1 p-distances between species ranging from 12.1-15.4%. Species of Acantopsis exhibit significant genetic structuring consistent with recognized freshwater ecoregions. Acanthopsis lachnostoma Rutter 1897, from Swatow, China, is not assignable to Acantopsis.
Members of the freshwater halfbeak genus Dermogenys are hard to identify to the species level, despite several previous attempts to isolate fixed meristic, morphometric and colour pattern differences. This has led to ongoing confusion in scientific literature, records of species occurrence, and entries in museum collections. Here, a DNA barcoding study was conducted on the genus to gain further understanding of its taxonomic status across the Southeast Asian region. Fish were collected from 33 localities, spanning freshwater and brackish habitats in Malaysia, Western Indonesia, Thailand and Vietnam. In total, 290 samples of Dermogenys spp. were amplified for a 651 base pair fragment of the mitochondrial cytochrome oxidase c subunit I (COI) gene. Analysis was able to successfully differentiate the three species: D. collettei, D. siamensis, D. sumatrana; reveal the presence of a new putative species, Dermogenys sp., that was sampled in sympatry with D. collettei at three locations; as well as uncovering two genetic lineages of a fifth species, D. bispina, that display non-overlapping geographical distributions in drainages of northern Borneo; Kudat and Sandakan. This study expands the barcode library for Zenarchopteridae, demonstrates the efficacy of DNA barcoding techniques for differentiating Dermogenys species, and the potential thereof in species discovery.